K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2022

\(xy+2yz+3zx=xy+zx+2yz+2zx=x\left(y+z\right)+2z\left(y+x\right)=x.\left(-x\right)+2z.\left(-z\right)=-x^2-2z^2\le0\)-Dấu bằng xảy ra \(\Leftrightarrow x=y=z=0\)

10 tháng 9
Để chứng minh x = y = z từ điều kiện cho trước, ta nghịch đảo hai vế của từng phân số để có được 1x+1y=1y+1z=1x+1z1 over x end-fraction plus 1 over y end-fraction equals 1 over y end-fraction plus 1 over z end-fraction equals 1 over x end-fraction plus 1 over z end-fraction1𝑥+1𝑦=1𝑦+1𝑧=1𝑥+1𝑧. Từ đó, ta suy ra 1x=1y=1z1 over x end-fraction equals 1 over y end-fraction equals 1 over z end-fraction1𝑥=1𝑦=1𝑧, và do x, y, z khác 0, ta có x = y = z.  Các bước chứng minh:
  1. Nghịch đảo các phân số:
Cho $ \frac{xy}{x+y} = \frac{yz}{y+z} = \frac{zx}{z+x} $.
Vì x, y, z khác 0 nên các phân số này khác 0, ta có thể nghịch đảo:
$ \frac{x+y}{xy} = \frac{y+z}{yz} = \frac{z+x}{zx} $. 
  1. Tách các phân số:
$ \frac{x}{xy} + \frac{y}{xy} = \frac{y}{yz} + \frac{z}{yz} = \frac{z}{zx} + \frac{x}{zx} $. 
  1. Rút gọn:
$ \frac{1}{y} + \frac{1}{x} = \frac{1}{z} + \frac{1}{y} = \frac{1}{x} + \frac{1}{z} $. 
  1. Sử dụng tính chất của đẳng thức:
Từ $ \frac{1}{y} + \frac{1}{x} = \frac{1}{z} + \frac{1}{y} $, ta trừ $ \frac{1}{y} $ ở cả hai vế, thu được:
$ \frac{1}{x} = \frac{1}{z} $.
Tương tự, từ $ \frac{1}{z} + \frac{1}{y} = \frac{1}{x} + \frac{1}{z} $, ta trừ $ \frac{1}{z} $ ở cả hai vế, thu được:
$ \frac{1}{y} = \frac{1}{x} $. 
  1. Kết luận:
Kết hợp các kết quả trên, ta có $ \frac{1}{x} = \frac{1}{y} = \frac{1}{z} $.
Vì x, y, z khác 0, ta có thể suy ra $ x = y = z $
13 tháng 7 2017

Ta có :

\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}=\frac{xyz}{z\left(x+y\right)}=\frac{xyz}{x\left(y+z\right)}=\frac{xyz}{y\left(x+z\right)}\)

\(\Rightarrow z\left(x+y\right)=x\left(y+z\right)=y\left(z+x\right)\)

Từ \(z\left(x+y\right)=x\left(y+z\right)\Leftrightarrow xz+yz=xy+xz\Leftrightarrow yz=xy\Rightarrow x=z\) (1)

Từ \(x\left(y+z\right)=y\left(x+z\right)\Leftrightarrow xy+xz=xy+yz\Leftrightarrow xz=yz\Rightarrow x=y\) (2)

Từ \(z\left(x+y\right)=y\left(z+x\right)\Leftrightarrow xz+yz=yz+xy\Leftrightarrow xz=xy\Rightarrow z=y\) (3)

Từ (1) ; (2) ; (3) \(\Rightarrow x=y=z\) (đpcm)

12 tháng 12 2016

\(\frac{2013x}{xy+2013x+2013}+\frac{y}{yz+y+2013}+\frac{z}{xz+z+1}\)

\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)

\(=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)

\(=\frac{xz+z+1}{xz+z+1}=1\)

=>đpcm

12 tháng 12 2016

2013x/xy+2013x+2013 + y/yz+y+2013 + z/xz+z+1

= xyz.x/xy+xyz.x+xyz + y/yz+y+xyz + z/xz+z+1

= xz/1+xz+z + 1/z+1+xz + z/xz+z+1

= xz+1+x/1+xz+x = 1 (đpcm)

AH
Akai Haruma
Giáo viên
18 tháng 12 2023

Lời giải:

$2023xy+2024yz+4047xz=2023xy+2024y(-x-y)+4047x(-x-y)$

$=-2024y^2-4047x^2-4048xy$

$=-[4047x^2+2024y^2+4048xy]$

$=-[2024(x^2+y^2+2xy)+2023x^2]=-[2024(x+y)^2+2023x^2]$

Vì $2024(x+y)^2+2023x^2\geq 0$ với mọi $x,y$

$\Rightarrow -[2024(x+y)^2+2023x^2]\leq 0$ với mọi $x,y$

Do đó nó không thể nhận giá trị dương.