Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt $\frac{x+10}{7}=\frac{y+6}{9}=\frac{27-z}{11}=k$
$\Rightarrow x=7k-10; y=9k-6; z=27-11k$
Khi đó:
$3x^2+y^2=199$
$\Rightarrow 3(7k-10)^2+(9k-6)^2=199$
$\Rightarrow 228k^2-528k+336=199$
$\Rightarrow 228k^2-528k+137=0$
Số khá xấu, không biết bạn có viết nhầm đề không?
làm lần lượt nhá,dài dòng quá khó coi.ahihihi!
\(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{7\left(\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)
\(=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}=\frac{1}{4}\)
a, \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\Rightarrow\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
=> x=8,y=6,z=18
b, \(\hept{\begin{cases}\frac{x}{y}=\frac{9}{7}\Rightarrow\frac{x}{9}=\frac{y}{7}\\\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{y}{7}=\frac{z}{3}\end{cases}\Rightarrow\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=\frac{-15}{5}=-3}\)
=> x=-27,y=-21,z=-9
c, \(\frac{6x}{11}=\frac{9y}{2}=\frac{18z}{5}\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\Rightarrow\frac{x}{33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
=> x=165,y=20,z=25
Giải:
Ta có: \(3x^3+7=199\)
\(\Rightarrow3x^3=192\)
\(\Rightarrow x^3=64\)
\(\Rightarrow x=4\)
\(\Rightarrow\frac{4+10}{7}=2=\frac{y+6}{9}=\frac{27-z}{11}\)
+) Xét \(\frac{y+6}{9}=2\Rightarrow y=12\)
+) Xét \(\frac{27-z}{11}=2\Rightarrow z=5\)
\(\Rightarrow x+y+z=2+12+5=19\)
Vậy x + y + z = 19
@Nguyễn Huy Tú sao câu nèo mình cũng gặp bạn vậy