Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x;y;z\ne0\). Giả thiết của đề bài:
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{z+x}\Leftrightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{x+z}{xz}\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{x}+\frac{1}{z}\Leftrightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}.\)
=> x = y = z
Do đó, M = 1.
Ta có: \(z^2=2\left(xz+yz-xy\right)=2xz+2yz-2xy\)
Xét:
\(x^2+\left(x-z\right)^2=x^2+z^2-z^2+\left(x-z\right)^2\)\(=\left(x-z\right)^2+2xz-\left(2xz+2yz-2xy\right)+\left(x-z\right)^2\)
\(=\left(x-z\right)^2+2xy-2yz+\left(x-z\right)^2=\left(x-z\right)^2+2y\left(x-z\right)+\left(x-z\right)^2\)
\(=\left(x-z\right)\left(x-z+2y+x-z\right)=\left(x-z\right)\left(2x+2y-2z\right)\) (1)
Xét:
\(y^2+\left(y-z\right)^2=y^2+z^2-z^2+\left(y-z\right)^2\)\(=\left(y-z\right)^2+2yz-\left(2xz+2yz-2xy\right)\)
\(=\left(y-z\right)^2+2xy-2xz+\left(y-z\right)^2=\left(y-z\right)^2+2x\left(y-z\right)+\left(y-z\right)^2\)
\(=\left(y-z\right)\left(y-z+2x+y-z\right)=\left(y-z\right)\left(2x+2y-2z\right)\) (2)
Từ (1); (2) => \(\frac{x^2+\left(x-z\right)^2}{y^2+\left(y-z\right)^2}=\frac{\left(x-z\right)\left(2x+2y-2z\right)}{\left(y-z\right)\left(2x+2y-2z\right)}=\frac{x-z}{y-z}\) \(\left(ĐPCM\right)\)
Ta có : \(x^2+y^2+z^2=xy+xz+yz\)
\(\Rightarrow2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)
\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(x^2-2xz+z^2\right)=0\)
\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
Mà : \(\left(x-y\right)^2\ge0\) với mọi x , y
\(\left(y-z\right)^2\ge0\) với mọi x , y
\(\left(x-z\right)^2\ge0\) với mọi x , y
Nên : \(\begin{cases}x-y=0\\y-z=0\\x-z=0\end{cases}\)
\(\Rightarrow x+y+z\left(đpcm\right)\)
Ta có:
\(\left\{{}\begin{matrix}x^2+xy+\dfrac{y^2}{3}=2019\\z^2+\dfrac{y^2}{3}=1011\\x^2+xz+z^2=1008\end{matrix}\right.\Leftrightarrow x^2+xy+\dfrac{y^2}{3}=z^2+\dfrac{y^2}{3}+x^2+xz+z^2\)
\(\Rightarrow xy=2z^2+xz\Leftrightarrow xy+xz=2z^2+2xz\)
\(\Rightarrow x\left(y+z\right)=2z\left(x+z\right)\Leftrightarrow\dfrac{2z}{x}=\dfrac{y+z}{x+z}\left(đpcm\right)\)
Ta có:\(\frac{xy}{x+y}=\frac{yz}{y+z}\Rightarrow xy\left(y+z\right)=yz\left(x+y\right)\Leftrightarrow xy^2+xyz=xyz+y^2z\Leftrightarrow xy^2=y^2z\Rightarrow x=z\)(1)
\(\frac{yz}{y+z}=\frac{xz}{x+z}\Rightarrow yz\left(x+z\right)=xz\left(y+z\right)\Leftrightarrow xyz+yz^2=xyz+xz^2\Leftrightarrow yz^2=xz^2\Rightarrow y=x\)(2)
Từ (1)và(2)suy ra:x=y=z
\(\Rightarrow x^2=xy,y^2=yz,z^2=xz\)
\(\Rightarrow M=\frac{xy+yz+xz}{xy+yz+xz}=1\)
Vậy M=1
Ta có: \(\left\{{}\begin{matrix}x^2=yz\\y^2=xz\\z^2=xy\end{matrix}\right.\)
Cộng theo vế 3 đẳng thức trên ta có:
\(x^2+y^2+z^2=yz+xz+xy\)
\(\Leftrightarrow2x^2+2y^2+2z^2=2yz+2xz+2xy\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2yz-2xz-2xy=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\forall x,y,z\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)\(\Rightarrow x=y=z\)