Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(x^2+4y^2+3z^2+14\ge2x+12y+6z\)
\(\Leftrightarrow x^2-2x+1+4y^2-12y+9+3z^2-6z+3+1\ge0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+3\left(z-1\right)^2+1\ge0\)
\(\LeftrightarrowĐPCM.\)
b ) \(a^2+b^2+c^2\ge\dfrac{1}{3}\left(a+b+c\right)^2\)
\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ac\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+c^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\LeftrightarrowĐPCM.\)
a) \(x^2+4y^2+3z^2+14\ge2x+12y+6z\)
\(\Rightarrow x^2+4y^2+3z^2+14-2x-12y-6z\ge0\)
\(\Rightarrow\left(x^2-2x+1\right)+\left(4y^2-12y+9\right)+3\left(z^2-2z+1\right)+1\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left(2y-3\right)^2+3\left(z-1\right)^2\ge-1\)
Xem lại đề
b)
\(a^2+b^2+c^2\ge\dfrac{1}{3}\left(a+b+c\right)^2\)
\(\Rightarrow3a^2+3b^2+3c^2\ge\left(a+b+c\right)^2\)
\(\Rightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ac\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)
\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ac\) *Đúng*
Dấu "=" xảy ra khi: \(a=b=c\)
Lời giải
áp dụng
\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) với \(\forall a,b\) đẳng thức khi ab>=0 nghĩa là a, b cùng "dấu"
\(VP=\left|x-y\right|+\left|y-z\right|\ge\left|\left(x-y\right)+\left(y-z\right)\right|=\left|x-z\right|=VT\)
\(\Rightarrow\left|x-z\right|\le\left|x-y\right|+\left|y-z\right|\)
Đẳng thức khi (x-y)(y-z)>=0
\(x^3y+xy^3=xy\left(x^2+y^2\right)\le\dfrac{\left(x^2+y^2\right)}{2}\left(x^2+y^2\right)\)\(=\dfrac{\left(x^2+y^2\right)^2}{2}\).
Áp dụng bất đẳng thức: \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\) ta suy ra:\(x^4+y^4\ge\dfrac{\left(x^2+y^2\right)^2}{2}\).
Theo tính chất bắc cầu của bất đẳng thức ta suy ra:
\(x^4+y^4\ge x^3y+xy^3\).
\(\left(1.x+9.\frac{1}{y}\right)^2\le\left(1^2+9^2\right)\left(x^2+\frac{1}{y^2}\right)\Rightarrow\sqrt{x^2+\frac{1}{y^2}}\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{y}\right)\)
\(TT:\sqrt{y^2+\frac{1}{z^2}}\ge\frac{1}{\sqrt{82}}\left(y+\frac{9}{z}\right);\sqrt{z^2+\frac{1}{x^2}}\ge\frac{1}{\sqrt{82}}\left(z+\frac{9}{x}\right)\)
\(S\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\right)\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{81}{x+y+z}\right)\)
\(=\frac{1}{\sqrt{82}}\left[\left(x+y+z+\frac{1}{x+y+z}\right)+\frac{80}{x+y+z}\right]\ge\sqrt{82}\)
Lời giải:
Do \(xyz=8\) nên tồn tại các số dương \(a,b,c\) sao cho \((x,y,z)=\left(\frac{2a^2}{bc},\frac{2b^2}{ac},\frac{2c^2}{ab}\right)\)
Khi đó , BĐT cần CM tương đương với:
\(P=\frac{a^4}{a^4+a^2bc+b^2c^2}+\frac{b^4}{b^4+b^2ac+a^2c^2}+\frac{c^4}{c^4+c^2ab+a^2b^2}\geq 1\)
Áp dụng BĐT Cauchy-Schwarz:
\(P\geq \frac{(a^2+b^2+c^2)^2}{a^4+b^4+c^4+abc(a+b+c)+a^2b^2+b^2c^2+c^2a^2}\) \((1)\)
Áp dụng bất đẳng thức AM-GM:
\(a^2b^2+b^2c^2\geq 2ab^2c\). Tương tự với các cặp biểu thức còn lại và cộng theo vế suy ra \(a^2b^2+b^2c^2+c^2a^2\geq abc(a+b+c)\)
\(\Rightarrow abc(a+b+c)+a^2b^2+b^2c^2+c^2a^2\leq 2(a^2b^2+b^2c^2+c^2a^2)\)
\(\Rightarrow a^4+b^4+c^4+abc(a+b+c)+a^2b^2+b^2c^2+c^2a^2\leq (a^2+b^2+c^2)^2\) \((2)\)
Từ \((1),(2)\Rightarrow P\geq 1\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z=2\)
Ta có: \(y=4x^3-x^4=x^3\left(4-x\right)=x.x.x.\left(4-x\right)\).
Vì vậy: \(3y=x.x.x.\left(12-4x\right)\).
Với \(0\le x\le4\) thì \(\left\{{}\begin{matrix}x\ge0\\12-4x\ge0\end{matrix}\right.\).
Áp dụng bất đẳng thức cô si cho bốn số: x,x,x, 12 - 3x ta có:
\(x.x.x.\left(12-3x\right)\le\left(\dfrac{x+x+x+12-3x}{4}\right)^4=81\).
Dấu bằng xảy ra khi: \(x=12-3x\)\(\Leftrightarrow4x=12\)\(\Leftrightarrow x=3\).
Như vậy: \(3y\le81\) \(\Leftrightarrow y\le27\) nên max của y bằng 27 khi x = 3.
\(VT=\dfrac{3}{xy+yz+xz}+\dfrac{2}{x^2+y^2+z^2}\)
\(=\dfrac{8}{4\left(xy+yz+xz\right)}+\dfrac{4}{4\left(xy+yz+xz\right)}+\dfrac{4}{2\left(x^2+y^2+z^2\right)}\)
\(\ge\dfrac{8}{4\cdot\dfrac{\left(x+y+z\right)^2}{3}}+\dfrac{\left(2+2\right)^2}{2\left(x+y+z\right)^2}\)
\(=\dfrac{8}{4\cdot\dfrac{1^2}{3}}+\dfrac{\left(2+2\right)^2}{2\cdot1^2}=14\)
\("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)
Giả sử \(x\le y\le z\) do \(xyz\le0\) nên\(x\le0\)
Do \(x^2+y^2+z^2=9\Rightarrow x^2\le9\Rightarrow x\in\left[-3;0\right]\)
Ta có \(yz\le\left(\frac{y+z}{2}\right)^2\le\frac{y^2+z^2}{2}\)
Do đó : \(2\left(x+y+z\right)-xyz=2x+2\left(y+z\right)-xyz\le2x+2\sqrt{2\left(y^2+z^2\right)}-x.\frac{y^2+z^2}{2}\)
\(=2x+2\sqrt{2\left(9-x^2\right)}-\frac{x\left(9-x^2\right)}{2}=\frac{x^3}{2}-\frac{5x}{2}+2\sqrt{2\left(9-x^2\right)}\)
Xét hàm số :
\(f\left(x\right)=\frac{x^3}{2}-\frac{5x}{2}=2\sqrt{2\left(9-x^2\right)}\) với \(x\in\left[-3;0\right]\) \(\Rightarrow f'\left(x\right)=\frac{3x^2}{2}-\frac{5}{2}-\frac{2\sqrt{2}x}{\sqrt{9-x^2}}\)
Xét \(f'\left(x\right)=0\Leftrightarrow\frac{3x^2}{2}-\frac{5}{2}-\frac{2\sqrt{2}x}{\sqrt{9-x^2}}=0\Leftrightarrow\sqrt{9-x^2}\left(5-3x^2\right)=-4\sqrt{2}x\)
\(\Leftrightarrow\left(9-x^2\right)\left(5-3x^2\right)=32x^2\) (với điều kiện \(5-3x^2\ge0\))
\(\Leftrightarrow9x^9-111x^4+327x^2-225=0\)
\(\Leftrightarrow x^2=1;x^2=3;x^2=\frac{25}{3}\)
\(x^2\le\frac{5}{3}\) nên \(x^2=1\Leftrightarrow x=1,x=-1\) (loại)
Ta có \(f\left(-3\right)=-6;f\left(1\right)=10;f\left(0\right)=6\sqrt{2}\) suy ra Max \(f\left(x\right)=f\left(-1\right)=10\)
\(2\left(x+y+z\right)-xyz\le f\left(x\right)\le10\)
Dấu = xảy ra khi x=-1, y=z và \(x^2+y^2+z^2=9\)
\(\Leftrightarrow x=-1;y=z=2\)
Giả sử: \(x^2+4y^2+3z^2+14>2x+12y+6x\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(4y^2-12y+9\right)+3\left(z^2-2x+1\right)+1\)> 0
\(\Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+3\left(z-1\right)^2+1>0\) (luôn đúng).
Suy ra: \(x^2+4y^2+3z^2+14>2x+12y+6x\).