\(xy+yz+3zx=1\). Tìm giá trị nhỏ nhất của biểu thức:<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 8 2017

Bài này dùng phương pháp chọn điểm rơi thôi:

Áp dụng BĐT AM-GM:

\(\frac{(-9+3\sqrt{17})x^2}{4}+\frac{z^2(-9+3\sqrt{17})}{4}\geq \frac{(-9+3\sqrt{17})xz}{2}\)

\(\frac{(13-3\sqrt{17})x^2}{4}+\frac{y^2}{2}\geq 2\sqrt{\frac{13-3\sqrt{17}}{8}}xy=\frac{(\sqrt{17}-3)xy}{2}\)

\(\frac{(13-3\sqrt{17})z^2}{4}+\frac{y^2}{2}\geq 2\sqrt{\frac{13-3\sqrt{17}}{8}}zy=\frac{(\sqrt{17}-3)zy}{2}\)

Cộng theo vế:

\(x^2+y^2+z^2\geq \frac{\sqrt{17}-3}{2}(xy+yz+3xz)=\frac{\sqrt{17}-3}{2}\)

\(\Leftrightarrow P_{\min}=\frac{\sqrt{17}-3}{2}\)

Dấu bằng xảy ra khi \(\frac{\sqrt{17}-3}{2}x=\frac{\sqrt{17}-3}{2}z=y\)

27 tháng 6 2017

Áp dụng BĐT Cô-si ta có:

\(2x^2+3xy+4y^2\ge3\sqrt[3]{2x^2\cdot3xy\cdot4y^2}=3\sqrt[3]{24x^3y^3}\Rightarrow\sqrt{2x^2+3xy+4y^2}\ge\sqrt{xy\cdot3\sqrt[3]{24}}\)

Tương tự: \(\sqrt{2y^2+3yz+4z^2}\ge\sqrt{yz\cdot3\sqrt[3]{24}}\);  \(\sqrt{2z^2+3zx+4x^2}\ge\sqrt{zx\cdot3\sqrt[3]{24}}\)

Cộng theo vế 3 BĐT vừa tìm, ta được:

\(P\ge\sqrt{3\sqrt[3]{24}}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=\sqrt{3\sqrt[3]{24}}=\sqrt[6]{648}\)

27 tháng 6 2017

Xem lại đề .
Có lẽ là 2x^2+3xy+2y^2 ((:

1 tháng 4 2019

*Max

Có: \(x^2+4\ge4x\)

        \(y^2+4\ge4y\)

      \(z^2+4\ge4z\)

\(\Rightarrow x^2+y^2+z^2+12\ge4\left(x+y+z\right)\)\(\Rightarrow x+y+z\le\frac{x^2+y^2+z^2+12}{4}\)

Lại có \(xy+yz+zx\le x^2+y^2+z^2\)(Auto chứng minh)


Cộng 2 vế của bdtd lại ta đc \(x+y+z+xy+yz+zx\le\frac{5\left(x^2+y^2+z^2\right)+12}{4}\)

                                                                                                     \(=\frac{5.12+12}{4}=18\)

"=" KHI x = y= z = 2

*Min : ta có : \(12+2\left(xy+yz+zx\right)\ge x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

                                                                      \(=\left(x+y+z\right)^2\ge0\)

\(\Rightarrow xy+yz+zx\ge-6\)

Dấu "=" xảy ra <=> x + y + z = 0

Với các giá trị trên ta đc \(x+y+z+xy+yz+zx\ge0-6=-6\)

Dấu "=" <=> x + y + z = 0 và x+ y2 + z2 = 12

2 tháng 4 2019

bạn ơi mình giải thế này thì sao nhỉ:

đặt x+y+z=a=> \(a^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

=> \(xy+yz+zx=\frac{a^2-\left(x^2+y^2+z^2\right)}{2}\ge\frac{a^2-12}{2}\)

\(\Rightarrow P\ge a+\frac{a^2-12}{2}\ge-\frac{13}{2}\)( dùng hằng đẳng thức c/m)

dấu " =" <=> \(\hept{\begin{cases}x+y+z=-1\\x^2+y^2+z^2=12\end{cases}}\)

bạn xem thử hộ mik cái =)

4 tháng 6 2019

\(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

\(\Leftrightarrow\frac{1}{a^2}-\frac{2}{ab}+\frac{1}{b^2}\ge0\)

\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\)

\(\Rightarrow Q.E.D\)

Dấu "=" xảy ra khi a=b

4 tháng 6 2019

\(gt\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=6\)

Đặt \(\frac{1}{x}=a,\frac{1}{y}=b,\frac{1}{z}=c\)thì \(P=a^2+b^2+c^2\)và \(a+b+c+ab+bc+ca=6\)

Giải:

Ta có: \(x^2+1\ge2\sqrt{x^2\cdot1}=2x\)

Tương tự rồi cộng theo vế ta được: \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)(1) 

Lại có: \(x^2+y^2+z^2\ge xy+yz+zx\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)(2) 

Cộng (1), (2) theo vế ta được:

\(3P+3\ge2\left(x+y+z+xy+yz+zx\right)=2\cdot6=12\)

\(\Rightarrow3P\ge9\Leftrightarrow P\ge3\)

MinP = 3 khi a = b = c = 1 hay x = y = z = 1

28 tháng 11 2019

\(Q=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=\frac{1^2}{xy}+\frac{1^2}{yz}+\frac{1^2}{xz}\ge\frac{\left(1+1+1\right)^2}{xy+yz+xz}\)

\(=\frac{9}{xy+yz+zx}\ge\frac{9}{x^2+y^2+z^2}\ge\frac{9}{6}=\frac{3}{2}\).

Dấu " = " xảy ra <=> x = y =z = \(\sqrt{2}\).

8 tháng 2 2017

Câu hỏi của Ngô Hoàng Phúc - Toán lớp 10 | Học trực tuyến

13 tháng 5 2017

\(xy+yz+zx-xyz=1-x-y-z+xy+yz+zx-xyz\)

\(=\left(1-x\right)-y\left(1-x\right)-z\left(1-x\right)+yz\left(1-x\right)\)

\(=\left(1-x\right)\left(1-y-z+yz\right)=\left(1-x\right)\left(1-y\right)\left(1-z\right)\)

\(xy+yz+zx+xyz+2=1+x+y+z+xy+yz+zx+xyz\)

\(=\left(1+x\right)+y\left(1+x\right)+z\left(1+x\right)+yz\left(1+x\right)\)

\(=\left(1+x\right)\left(1+y\right)\left(1+z\right)\)

\(1+x+y+z=1+1\Rightarrow1+x=\left(1-y\right)+\left(1-z\right)\ge2\sqrt{\left(1-y\right)\left(1-z\right)}\)

Tương tự ta cũng có: \(1+y\ge2\sqrt{\left(1-z\right)\left(1-x\right)}\)

\(1+z\ge2\sqrt{\left(1-x\right)\left(1-y\right)}\)

Vậy \(S\le\frac{\left(1-x\right)\left(1-y\right)\left(1-z\right)}{8\left(1-x\right)\left(1-y\right)\left(1-z\right)}=\frac{1}{8}\)