Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cauchy-Schwarz : \(\left(x^2+y^2+z^2\right)\left(y^2+z^2+x^2\right)\ge\left(xy+yz+zx\right)^2\)
\(\Leftrightarrow x^2+y^2+z^2\ge\left|xy+yz+zx\right|\ge xy+yz+zx\)(1)
Mặt khác :
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
\(\Leftrightarrow x^2+y^2+z^2=9-2\left(xy+yz+zx\right)\)
Kết hợp (1)
=> \(9-2\left(xy+yz+xz\right)\ge xy+yz+zx\)
\(\Leftrightarrow3\left(xy+yz+zx\right)\le9\)
\(\Leftrightarrow xy+yz+zx\le3\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\\x+y+z=3\end{cases}}\)<=> x=y=z=1
Vậy MaxM=3 khi x=y=z=1
Ta có: \(x^2+y^2+z^2\ge xy+yz+zx\)
<=>\(x^2+y^2+z^2+2\left(xy+yz+zx\right)\ge3\left(xy+yz+zx\right)\)<=>\(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)
<=>\(3^2\ge3\left(xy+yz+zx\right)\)<=>\(P=xy+yz+zx\le3\)=>Pmax=3 <=> x=y=z=1
Ta có BĐT đúng sau:
x2 + y2 + z2 >= xy + yz + zx
<=> (x + y + z)2 >= 3(xy + yz + zx)
<=> 9 >= 3 P <=> P <=3 (dấu bằng khi x = y = z =1)
\(Q=\frac{1}{\frac{x}{y}+\frac{z}{x}+1}+\frac{1}{\frac{y}{z}+\frac{x}{y}+1}+\frac{1}{\frac{z}{x}+\frac{y}{z}+1}\)
Đặt \(\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)=\left(a^3;b^3;c^3\right)\Rightarrow abc=1\)
\(Q=\frac{1}{a^3+c^3+1}+\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}\)
Ta có: \(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)
\(\Rightarrow Q\le\frac{1}{ac\left(a+c\right)+1}+\frac{1}{ab\left(a+b\right)+1}+\frac{1}{bc\left(b+c\right)+1}\)
\(Q\le\frac{abc}{ac\left(a+c\right)+abc}+\frac{abc}{ab\left(a+b\right)+abc}+\frac{abc}{bc\left(b+c\right)+abc}\)
\(Q\le\frac{b}{a+b+c}+\frac{c}{a+b+c}+\frac{a}{a+b+c}=1\)
\(\Rightarrow Q_{max}=1\) khi \(a=b=c=1\) hay \(x=y=z\)
Câu hỏi của phan tuấn anh - Toán lớp 9 - Học toán với OnlineMath cái này y hệt, tham khảo đi nếu vẫn chưa làm dc thì nhắn cho mk
Ta có \(P=xy+yz+zx\le\dfrac{\left(x+y+z\right)^2}{3}=3\).
Đẳng thức xảy ra khi x = y = z = 1.
với mọi x, y, z ta có:
(x-y)^2 +(y-z)^2+ (z-x)^2>=0
<=>2x^2 +2y^2 + 2z^2 - 2xy -2yz - 2xz >=0
<=>x^2 + y^2 +z^2 - xy -yz -zx >=0
<=>(x+y+z)^2 >= 3(x+y+z)
<=>[(x+y+z)^2]/3 >= xy+yz+ zx
=>xy +yz + zx <=3
dấu = xảy ra khi x=y=z =1
=> Max P=3
Ta có :
\(M=x^4+y^4+z^4=\left(x^4+\frac{1}{9}\right)+\left(y^4+\frac{1}{9}\right)+\left(z^4+\frac{1}{9}\right)-\frac{1}{3}\)
Áp dụng BĐT \(a^2+b^2\ge2ab\) ( "=" khi a=b ) , ta có :
\(M\ge\frac{2}{3}x^2+\frac{2}{3}y^2+\frac{2}{3}z^2-\frac{1}{3}\)
\(\Rightarrow M\ge\frac{1}{3}\left(2x^2+2y^2+2z^2\right)-\frac{1}{3}\)
\(\Rightarrow M\ge\frac{1}{3}\left[\left(x^2+y^2\right)+\left(y^2+z^2\right)+\left(x^2+z^2\right)\right]-\frac{1}{3}\)
\(\Rightarrow M\ge\frac{2}{3}.\left(xy+yz+xz\right)-\frac{1}{3}=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\) ( Vì xy+yz+xz=1 )
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Vậy \(GTNN_M=\frac{1}{3}\) khi \(x=y=z=\frac{1}{\sqrt{3}}\)
( Ko bít đúng Ko ) :)