\(\ge\)12. Tìm GTNN

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2018

Theo dõi cho mk heng =))
Xin lỗi vì đã spam hehe

21 tháng 12 2018

Câu hỏi của Nguyễn Thị Ngọc Thơ - Toán lớp 9 | Học trực tuyến

29 tháng 8 2021

Giá trị nhỏ nhất là 3 căn 7 trên 2

29 tháng 8 2021

\(\dfrac{3\sqrt{17}}{2}\)

31 tháng 5 2018

https://hoc24.vn//hoi-dap/question/280689.html

AH
Akai Haruma
Giáo viên
25 tháng 1 2018

Lời giải:

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\Leftrightarrow xy+yz+xz=xyz\)

\(\Rightarrow x^2+xy+yz+xz=x^2+xyz=x(x+yz)\)

\(\Leftrightarrow x+yz=\frac{x^2+xy+yz+xz}{x}=\frac{(x+y)(x+z)}{x}\)

\(\Rightarrow \sqrt{x+yz}=\sqrt{\frac{(x+y)(x+z)}{x}}\)

Áp dụng BĐT Bunhiacopxky:\((x+y)(x+z)\geq (x+\sqrt{yz})^2\)

\(\Rightarrow \sqrt{x+yz}=\sqrt{\frac{(x+y)(x+z)}{x}}\geq \frac{x+\sqrt{yz}}{\sqrt{x}}\)

Hoàn toàn tương tự:

\(\sqrt{y+xz}\geq \frac{y+\sqrt{xz}}{\sqrt{y}}\); \(\sqrt{z+xy}\geq \frac{z+\sqrt{xy}}{\sqrt{z}}\)

Cộng theo vế các BĐT đã thu được ta có:

\(\text{VT}\geq \frac{x+\sqrt{yz}}{\sqrt{x}}+\frac{y+\sqrt{xz}}{\sqrt{y}}+\frac{z+\sqrt{xy}}{\sqrt{z}}=\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xy+yz+xz}{\sqrt{xyz}}\)

\(\Leftrightarrow \text{VT}\geq \sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xyz}{\sqrt{xyz}}=\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}=\text{VP}\)

Do đó ta có đpcm.

Dấu bằng xảy ra khi \(x=y=z=3\)

10 tháng 5 2018

\(\text{Cho 3 số dương x, y, z thỏa mãn }x+y+z=3\)

\(\text{Chứng minh rằng }T=\dfrac{x}{x+\sqrt{3x+yz}}+\dfrac{y}{y+\sqrt{3y+xz}}+\dfrac{z}{z+\sqrt{3z+xy}}\le1\)

➤➤➤Chứng minh:

➢ Áp dụng bất đẳng thức AM - GM

\(\Rightarrow\dfrac{x}{x+\sqrt{3x+yz}}=\dfrac{x}{x+\sqrt{x\left(x+y+z\right)+yz}}\left(\text{vì }x+y+z=3\right)=\dfrac{x}{x+\sqrt{\left(x+y\right)\left(z+x\right)}}\le\dfrac{x}{x+\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}}=\dfrac{x}{x+\sqrt{xz}+\sqrt{xy}}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

➢ Tương tự:

\(\dfrac{y}{y+\sqrt{3y+xz}}\le\dfrac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

\(\dfrac{z}{z+\sqrt{3z+xy}}\le\dfrac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

➢ Công vế theo vế 3 bất đẳng thức cùng chiều

\(\Rightarrow\dfrac{x}{x+\sqrt{3x+yz}}+\dfrac{y}{y+\sqrt{3y+xz}}+\dfrac{z}{z+\sqrt{3z+xy}}\le\dfrac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)

\(\text{Đẳng thức xảy ra khi }x=y=z=1\)

\(Max_T=1\Leftrightarrow x=y=z=1\)

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

Lời giải:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(M=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{z}}+\frac{z}{\sqrt{x}}=\frac{x^2}{x\sqrt{y}}+\frac{y^2}{y\sqrt{z}}+\frac{z^2}{z\sqrt{x}}\)

\(\geq \frac{(x+y+z)^2}{x\sqrt{y}+y\sqrt{z}+z\sqrt{x}}(1)\)

Áp dụng BĐT Bunhiacopxky:

\((x\sqrt{y}+y\sqrt{z}+z\sqrt{x})^2\leq (x+y+z)(xy+yz+xz)\)

Mà theo hệ quả quen thuộc của BĐT Cauchy thì:

\(xy+yz+xz\leq \frac{(x+y+z)^2}{3}\)

\(\Rightarrow (x\sqrt{y}+y\sqrt{z}+z\sqrt{x})^2\leq \frac{(x+y+z)^3}{3}\)

\(\Rightarrow x\sqrt{y}+y\sqrt{z}+z\sqrt{x}\leq \sqrt{\frac{(x+y+z)^3}{3}}(2)\)

Từ \((1);(2)\Rightarrow M\geq \sqrt{3(x+y+z)}\geq \sqrt{3.12}=6\)

Vậy \(M_{\min}=6\Leftrightarrow x=y=z=4\)

1 tháng 6 2017

Ta có : \(3\sqrt{xyz}=\sqrt{x}^2+\sqrt{y}^3+\sqrt{z}^3\ge3\sqrt[3]{\sqrt{x}^3\sqrt{y}^3\sqrt{z}^3}=3\sqrt{x}\sqrt{y}\sqrt{z}=3\sqrt{xyz}.\)

Dấu = xảy ra

=> x =y =z

=> A = (1+1)(1+1)(1+1) =8

1 tháng 6 2017

mk thấy nó sai sai . Tại sao 3\(\sqrt[3]{\sqrt{x}^3\sqrt{y}^3\sqrt{z}^3}\) = 3\(\sqrt{x}\sqrt{y}\sqrt{z}\)