K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2020

Đặt \(a=2x+y+z;b=2y+z+x;c=2z+x+y\)

\( \implies\) \(a+b+c=\left(2x+y+z\right)+\left(2y+z+x\right)+\left(2z+x+y\right)\) 

\( \implies\) \(a+b+c=4x+4y+4z\)

\( \implies\) \(x+y+z=\frac{a+b+c}{4}\) 

+)Ta có : \(a=2x+y+z\)

\(\iff\) \(a=x+\left(x+y+z\right)\)

\(\iff\) \(a-\left(x+y+z\right)=x\)

\(\iff\) \(a-\frac{a+b+c}{4}=x\)

\(\iff\) \(x=\frac{3a-b-c}{4}\)

+)Ta có :\(b=2y+z+x\)

\(\iff\) \(b=y+\left(y+z+x\right)\)

\(\iff\)\(b-\left(y+z+x\right)=y\)

\(\iff\) \(b-\frac{a+b+c}{4}=y\)

\(\iff\)\(y=\frac{3b-c-a}{4}\)

+)Ta có :\(c=2z+x+y\)

\(\iff\) \(c=z+\left(z+x+y\right)\)

\(\iff\) \(c-\left(z+x+y\right)=z\)

\(\iff\) \(c-\frac{a+b+c}{4}=z\)

\(\iff\)\(z=\frac{3c-a-b}{4}\)

​​\( \implies\)​ \(\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+x+y}\) 

 \(=\frac{3a-b-c}{4a}+\frac{3b-c-a}{4b}+\frac{3c-a-b}{4c}\)

 \(=\frac{9}{4}-\left(\frac{b}{4a}+\frac{c}{4a}+\frac{c}{4b}+\frac{a}{4b}+\frac{a}{4c}+\frac{b}{4c}\right)\)

 \(=\frac{9}{4}-\frac{1}{4}\left(\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}\right)\)

 \(=\frac{9}{4}-\frac{1}{4}\left[\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right]\)

Áp dụng bất đẳng thức ( BĐT Cosi ) : \(m+n\)\( \geq\)\(2\sqrt{mn}\) \(\left(m;n>0\right)\)ta được : 

\(\frac{b}{a}+\frac{a}{b}\) \( \geq\) 2 \(\sqrt{\frac{b}{a}.\frac{a}{b}}\) = 2 \( \implies\) \(\frac{b}{a}+\frac{a}{b}\) \( \geq\) 2 

\(\frac{c}{a}+\frac{a}{c}\) \( \geq\) 2 \(\sqrt{\frac{c}{a}.\frac{a}{c}}\) = 2 \( \implies\) \(\frac{c}{a}+\frac{a}{c}\) \( \geq\) 2 

\(\frac{b}{c}+\frac{c}{b}\) \( \geq\) 2 \(\sqrt{\frac{b}{c}.\frac{c}{b}}\) = 2 \( \implies\) \(\frac{b}{c}+\frac{c}{b}\) \( \geq\) 2 

\( \implies\) \(\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\) \( \geq\) 2 + 2 + 2 

\( \implies\) ​​\(\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)​ \( \geq\) 6 

\( \implies\) \(\frac{1}{4}\left[\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right]\) \( \geq\) \(\frac{6}{4}\)

\( \implies\) \(\frac{1}{4}\left[\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right]\) \( \geq\) \(\frac{3}{2}\)

\( \implies\) \(-\frac{1}{4}\left[\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right]\) \(\leq\) \(-\frac{3}{2}\)

\( \implies\) \(\frac{9}{4}-\frac{1}{4}\left[\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right]\) \(\leq\) \(\frac{9}{4}-\frac{3}{2}\)

\( \implies\) \(\frac{9}{4}-\frac{1}{4}\left[\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right]\) \(\leq\) \(\frac{3}{4}\) 

23 tháng 3 2020

Dấu " = " xảy ra khi a = b = c hay x = y = z 

20 tháng 4 2015

đặt a = 2x + y + z; b = 2y + z + x; c = 2z + x + y (a; b ; c > 0)

=> a + b + c = 4.(x+ y + z) => x + y + z = (a+ b+ c) / 4

=> x = a - (x+ y + z) = a - (a+ b + c) / 4 

y = b - (x + y + z) = b - (a+b+c) / 4

z = c - (x+y + z) = c - (a+b+c)/ 4 

Khi đó :  \(VT=1-\frac{a+b+c}{4a}+1-\frac{a+b+c}{4b}+1-\frac{a+b+c}{4c}\)

\(VT=3-\left(\frac{a+b+c}{4a}+\frac{a+b+c}{4b}+\frac{a+b+c}{4c}\right)=3-\frac{1}{4}.\left(a+b+c\right).\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(VT=3-\frac{1}{4}.\left(1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\right)=3-\frac{1}{4}.\left(3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right)\)

Với a, b > 0 ta có: a/b + b/ a > = 2

=> \(\frac{1}{4}.\left(3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right)\ge\frac{1}{4}.\left(3+2+2+2\right)=\frac{9}{4}\)

=> \(VT\le3-\frac{9}{4}=\frac{3}{4}\)

Dấu = xảy ra khi a= b = c => x = y = z 

11 tháng 1 2019

Mãi mới nghĩ ra cách này:

\(VT=\frac{x}{\left(x+y\right)+\left(x+z\right)}+\frac{y}{\left(y+x\right)+\left(y+z\right)}+\frac{z}{\left(z+x\right)+\left(z+y\right)}\)

Áp dụng BĐT \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)

Ta có: \(\frac{x}{\left(x+y\right)+\left(x+z\right)}=x\left(\frac{1}{\left(x+y\right)+\left(x+z\right)}\right)\)

\(\le\frac{1}{4}x\left(\frac{1}{x+y}+\frac{1}{x+z}\right)=\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)

Thiết lập tương tự 2 BĐT còn lại và cộng theo vế,ta có:

\(VT\le\frac{1}{4}\left[\left(\frac{x}{x+y}+\frac{y}{x+y}\right)+\left(\frac{x}{x+z}+\frac{z}{x+z}\right)+\left(\frac{y}{y+z}+\frac{z}{y+z}\right)\right]\)

\(=\frac{1}{4}\left(1+1+1\right)=\frac{3}{4}\) (đpcm)

Dẫu "=" xảy ra khi \(x=y=z\)

10 tháng 1 2019

Dễ thôi bạn ơi\(\frac{x}{2x+y+z}+\frac{y}{2y+x+z}+\frac{z}{2z+x+y}=\frac{x+y+z}{2x+y+z+2y+x+z+2z+x+y}=\frac{x+y+z}{4\left(x+y+z\right)}=\frac{1}{4}\)

      Vì   \(\frac{1}{4}< \frac{3}{4}\)      

      \(\Rightarrow\frac{x}{2x+y+z}+\frac{y}{2y+x+z}+\frac{z}{2z+x+y}\le\frac{3}{4}\)

13 tháng 6 2018

Bài của lớp 7 ghê vậy!!

Áp dụng bất đẳng thức Cauchy cho 3 số dương x,y,z

ta có bổ đề \((a+b+c)({1\over a}+{1\over b}+{1\over c})\)  >  9

Áp dụng vào ta có

\(D*({2x+y+z\over x}+{2y+x+z\over y}+{2z+y+x\over z})\)  >9(1)

Ta có \({2x+y+z\over x}+{2y+x+z\over y}+{2z+y+x\over z}\) =\(2+{y+z\over x}+2+{z+x\over y}+2+{y+x\over z}\)=\(6-3+{y+z\over x}+1+{z+x\over y}+1+{y+x\over z}+1\)=\(3+{x+y+z\over x}+{y+x+z\over y}+{z+y+x\over z}\)=\(3+(x+y+z)({1\over x}+{1\over y}+{1\over z})\)  3+9=12

thay vào(1)

Ta có \(D \) <  \({9\over 12}\)=\({3\over 4}\) 

Dấu "=" xảy ra khi x=y=z 

=> ĐPCM

13 tháng 6 2018

áp dụng bất đẳng thức phụ : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\frac{x}{2x+y+z}=\frac{x}{x+y+x+z}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)

\(\frac{y}{2y+x+z}\le\frac{1}{4}\left(\frac{y}{y+x}+\frac{y}{y+z}\right)\)

\(\frac{z}{2z+x+y}\le\frac{1}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\)

cộng vế theo vế

\(\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+x+y}\le\frac{1}{4}\left(\frac{x+y}{x+y}+\frac{y+z}{y+z}+\frac{z+x}{z+x}\right)=\frac{1}{4}\cdot3=\frac{3}{4}\)(đpcm)

20 tháng 7 2017

Cậu vào đây nha ! 

Câu hỏi của doanthihuong - Toán lớp 7 - Học toán với OnlineMath

20 tháng 6 2019

2a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\)    =>  \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)

Vậy x,y,z lần lượt là 20; 12; 42

20 tháng 6 2019

#)Giải :

Bài 2 :

d) Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow2k.3k.5k=810\)

\(\Rightarrow30k^3=810\)

\(\Rightarrow k^3=3\)

\(\Rightarrow k=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{5}=3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\x=9\\x=15\end{cases}}}\)

Vậy x = 6; y = 9; z = 15