Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\)
Ta có: \(x+\frac{1}{y}=y+\frac{1}{z}\)
\(\Rightarrow x-y=\frac{1}{z}-\frac{1}{y}\Rightarrow x-y=\frac{y-z}{yz}\)
Tương tự: \(y-z=\frac{z-x}{xz},z-x=\frac{x-y}{xy}\)
\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{y-z}{yz}.\frac{z-x}{xz}.\frac{x-y}{xy}\)
\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{x^2y^2z^2}\)
\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(1-\frac{1}{x^2y^2z^2}\right)=0\)(1)
Mà x,y,z đoi 1 khác nhau nên: \(x-y\ne0,y-z\ne0,z-x\ne0\)(2)
Từ (1) và (2) ta được: \(1-\frac{1}{x^2y^2z^2}=0\Rightarrow x^2y^2z^2=1\)
Vậy \(A=x^4y^4z^4=\left(x^2y^2z^2\right)^2=1^2=1\)
Chúc bạn học tốt.
\(\frac{2013x}{xy+2013x+2013}+\frac{y}{yz+y+2013}+\frac{z}{xz+z+1}\)
\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)
\(=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)
\(=\frac{xz+z+1}{xz+z+1}=1\)
=>đpcm
2013x/xy+2013x+2013 + y/yz+y+2013 + z/xz+z+1
= xyz.x/xy+xyz.x+xyz + y/yz+y+xyz + z/xz+z+1
= xz/1+xz+z + 1/z+1+xz + z/xz+z+1
= xz+1+x/1+xz+x = 1 (đpcm)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:\(\frac{ }{ }\)
y+z-x/x=z+x-y/y=x+y-z/z
=y+z-x+z+x-y+x+y-z/x+y+z
=(y-y)+(z-z)-(x-x)+z+x+y/x+y+z
=0+0+0+x+y+z/x+y+z=1
\(\Leftrightarrow\)x=y=z (*)
thay (*) vào B ta có:
B=(1+x/x)(1+x/x)(1+x/x)
=2.2.2=8
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(...=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)( vì x + y + z \(\ne\)0 )
\(\Rightarrow\hept{\begin{cases}\frac{y+z-x}{x}=1\\\frac{z+x-y}{y}=1\\\frac{x+y-z}{z}=1\end{cases}}\Rightarrow\hept{\begin{cases}y+z-x=x\\z+x-y=y\\x+y-z=z\end{cases}}\Rightarrow\hept{\begin{cases}y+z=2x\\z+x=2y\\x+y=2z\end{cases}}\Rightarrow x=y=z\)
Thế x = y = z vào B ta được :
\(B=\left(1+\frac{y}{y}\right)\left(1+\frac{x}{x}\right)\left(1+\frac{z}{z}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2\cdot2\cdot2=8\)
theo t/c dãy tỉ số=nhau:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
=>x=y=z
\(1+\frac{x}{y}=\frac{x+y}{y}=\frac{y+y}{y}=\frac{2y}{y}=2\)
\(1+\frac{y}{z}=\frac{y+z}{z}=\frac{z+z}{z}=\frac{2z}{z}=2\)
\(1+\frac{z}{x}=\frac{z+x}{x}=\frac{x+x}{x}=\frac{2x}{x}=2\)
=>B=2.2.2=8
\(\frac{3x+3y+3z}{x+y+z}\)=\(\frac{1}{3}\)
\(\Leftrightarrow x=\frac{1}{2};y=\frac{1}{2};z=-\frac{1}{2}\)
\(\Leftrightarrow B=\left(1+\frac{\frac{1}{2}}{\frac{1}{2}}\right)\left(1+\frac{\frac{1}{2}}{\frac{-1}{2}}\right)\left(1+\frac{\frac{-1}{2}}{\frac{1}{2}}\right)\)=0
\(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\)\(\Rightarrow\hept{\begin{cases}x-y=\frac{1}{z}-\frac{1}{y}=\frac{y-z}{xy}\\y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{xz}\\z-x=\frac{1}{y}-\frac{1}{x}=\frac{x-y}{xy}\end{cases}}\)
\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{\left(xyz\right)^2}\)
\(\Leftrightarrow\frac{1}{\left(xyz\right)^2}=1\Rightarrow xyz=\pm1\)(đpcm)