\(x^2+y^2+z^2+t^2=1\) 
Tìm max \(P=\frac{xy...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có : \(x^2+1=x^2+xy+yz+zx=x\left(x+y\right)+z\left(x+y\right)=\left(x+y\right)\left(x+z\right)\)Tương tự ta đc \(y^2+1=\left(y+x\right)\left(y+z\right)\)                        \(z^2+1=\left(z+x\right)\left(z+y\right)\)ĐẶt \(A=x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{\left(1+x^2\right)}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{\left(1+y^2\right)}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{\left(1+z^2\right)}}\)\(\Rightarrow...
Đọc tiếp

ta có : \(x^2+1=x^2+xy+yz+zx=x\left(x+y\right)+z\left(x+y\right)=\left(x+y\right)\left(x+z\right)\)
Tương tự ta đc \(y^2+1=\left(y+x\right)\left(y+z\right)\)
                        \(z^2+1=\left(z+x\right)\left(z+y\right)\)
ĐẶt \(A=x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{\left(1+x^2\right)}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{\left(1+y^2\right)}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{\left(1+z^2\right)}}\)
\(\Rightarrow A=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}+y\sqrt{\frac{\left(z+x\right)\left(z+y\right)\left(x+y\right)\left(x+z\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\frac{\left(x+y\right)\left(x+z\right)\left(y+z\right)\left(y+x\right)}{\left(z+x\right)\left(z+y\right)}}\)
\(\Rightarrow A=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)=2\left(xy+yz+zx\right)=2\)

0
15 tháng 1 2020

Ta đặt: \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c;\frac{1}{t}=d\)  ( a, b, c, d >0 )

Khi đó ta cần chứng minh:

 \(\frac{a^3}{\frac{1}{bc}+\frac{1}{cd}+\frac{1}{db}}+\frac{b^3}{\frac{1}{ac}+\frac{1}{cd}+\frac{1}{da}}+\frac{c^3}{\frac{1}{ab}+\frac{1}{bd}+\frac{1}{da}}+\frac{d^3}{\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}}\ge\frac{1}{3}\left(a+b+c+d\right)\)

\(VT=\frac{a^3}{\frac{b+c+d}{bcd}}+\frac{b^3}{\frac{a+c+d}{acd}}+\frac{c^3}{\frac{a+b+d}{abd}}+\frac{d^3}{\frac{a+b+c}{abc}}\)

\(=\frac{a^3}{\frac{a\left(b+c+d\right)}{abcd}}+\frac{b^3}{\frac{b\left(a+c+d\right)}{abcd}}+\frac{c^3}{\frac{c\left(a+b+d\right)}{abcd}}+\frac{d^3}{\frac{d\left(a+b+c\right)}{abcd}}\)

\(=\frac{a^2}{b+c+d}+\frac{b^2}{a+c+d}+\frac{c^2}{a+b+d}+\frac{d^2}{a+b+c}\)

\(\ge\frac{\left(a+b+c+d\right)^2}{3\left(a+b+c+d\right)}=\frac{a+b+c+d}{3}=VP\)

Vậy ta đã chứng minh được

\(\frac{a^3}{\frac{1}{bc}+\frac{1}{cd}+\frac{1}{db}}+\frac{b^3}{\frac{1}{ac}+\frac{1}{cd}+\frac{1}{da}}+\frac{c^3}{\frac{1}{ab}+\frac{1}{bd}+\frac{1}{da}}+\frac{d^3}{\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}}\ge\frac{1}{3}\left(a+b+c+d\right)\)

Dấu "=" xảy ra <=> a = b = c = d 

Vậy : 

\(\frac{1}{x^3\left(yz+zt+ty\right)}+\frac{1}{y^3\left(xz+zt+tx\right)}+\frac{1}{z^3\left(xy+yt+tx\right)}+\frac{1}{t^3\left(xy+yz+zx\right)}\ge\frac{1}{3}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)\)

Dấu "=" xảy ra <=> x = y = z = t = 1

4 tháng 2 2018

https://olm.vn/hoi-dap/question/850271.html

1. a) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\). Tìm max \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+zx+6}}\) b) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=8\end{matrix}\right.\). Min \(P=\frac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\frac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\frac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\) c) \(x,y,z>0.\) Min...
Đọc tiếp

1. a) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\). Tìm max \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+zx+6}}\)

b) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=8\end{matrix}\right.\). Min \(P=\frac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\frac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\frac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\)

c) \(x,y,z>0.\) Min \(P=\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}+\sqrt{\frac{y^3}{y^3+\left(z+x\right)^3}}+\sqrt{\frac{z^3}{z^3+\left(x+y\right)^3}}\)

d) \(a,b,c>0;a^2+b^2+c^2+abc=4.Cmr:2a+b+c\le\frac{9}{2}\)

e) \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=3\end{matrix}\right.\). Cmr: \(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ca}\ge\frac{3}{2}\)

f) \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca+abc=4\end{matrix}\right.\) Cmr: \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le3\)

g) \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca+abc=2\end{matrix}\right.\) Max : \(Q=\frac{a+1}{a^2+2a+2}+\frac{b+1}{b^2+2b+2}+\frac{c+1}{c^2+2c+2}\)

3
26 tháng 4 2020

Câu 1 chuyên phan bội châu

câu c hà nội

câu g khoa học tự nhiên

câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ

câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)

Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !

25 tháng 4 2020

Câu c quen thuộc, chém trước:

Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)

Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)

Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)

\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)

Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)

\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)

Done.

1. a) Tìm \(n\in N\)*, \(n>2008\) sao cho \(2^{2008}+2^{2012}+2^{2013}+2^{2014}+2^{2016}+2^n\) là số chính phương b) tìm x,y > 0 thỏa mãn \(x^2+y^2=2\left(x+y\right)\left(\sqrt{x}+\sqrt{y}-2\right)\) 2. a) \(\left\{{}\begin{matrix}a\ge0\\a+b\ge1\end{matrix}\right.\). Min \(A=\frac{8a^2+b}{4a}+b^2\) b) \(\left\{{}\begin{matrix}a,b\ge0\\\left(a-b\right)^2=a+b+2\end{matrix}\right.\). Cmr:...
Đọc tiếp

1. a) Tìm \(n\in N\)*, \(n>2008\) sao cho \(2^{2008}+2^{2012}+2^{2013}+2^{2014}+2^{2016}+2^n\) là số chính phương

b) tìm x,y > 0 thỏa mãn \(x^2+y^2=2\left(x+y\right)\left(\sqrt{x}+\sqrt{y}-2\right)\)

2. a) \(\left\{{}\begin{matrix}a\ge0\\a+b\ge1\end{matrix}\right.\). Min \(A=\frac{8a^2+b}{4a}+b^2\)

b) \(\left\{{}\begin{matrix}a,b\ge0\\\left(a-b\right)^2=a+b+2\end{matrix}\right.\). Cmr: \(\left(1+\frac{a^3}{\left(b+1\right)^3}\right)\left(1+\frac{b^3}{\left(b+1\right)^3}\right)\le9\)

c) \(x,y>0;\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=2020\). Min P = x + y

d) \(x,y,z>0;\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=6\). Min \(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

e) \(\left\{{}\begin{matrix}x,y,z>0\\x+y+z+4xyz=4\end{matrix}\right.\) Cmr: \(\left(1+xy+\frac{y}{z}\right)\left(1+yz+\frac{z}{x}\right)\left(1+zx+\frac{x}{y}\right)\ge27\)

f) \(\left\{{}\begin{matrix}x,y,z\ge1\\3x^2+4y^2+5z^2=52\end{matrix}\right.\). Min P = x + y + z

g) \(x,y>0\). Min \(P=\frac{2}{\sqrt{\left(2x+y\right)^3+1}-1}+\frac{2}{\sqrt{\left(x+2y\right)^3+1}-1}+\frac{\left(2x+y\right)\left(x+2y\right)}{4}-\frac{8}{3\left(x+y\right)}\)

6
23 tháng 2 2020

?Amanda?, Phạm Lan Hương, Phạm Thị Diệu Huyền, Vũ Minh Tuấn, Nguyễn Ngọc Lộc , @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @Trần Thanh Phương

giúp e với ạ! Cần trước 5h chiều nay! Cảm ơn mn nhiều!

NV
23 tháng 2 2020

Tranh thủ làm 1, 2 bài rồi ăn cơm:

1/ Đặt \(m=n-2008>0\)

\(\Rightarrow2^{2008}\left(369+2^m\right)\) là số chính phương

\(\Rightarrow369+2^m\) là số chính phương

m lẻ thì số trên chia 3 dư 2 nên ko là số chính phương

\(\Rightarrow m=2k\Rightarrow369=x^2-\left(2^k\right)^2=\left(x-2^k\right)\left(x+2^k\right)\)

b/

\(2\left(a^2+b^2\right)\left(a+b-2\right)=a^4+b^4\) \(\left(a+b>2\right)\)

\(\Rightarrow2\left(a^2+b^2\right)\left(a+b-2\right)\ge\frac{1}{2}\left(a^2+b^2\right)^2\)

\(\Rightarrow a^2+b^2\le4\left(a+b-2\right)\)

\(\Rightarrow\left(a-2\right)^2+\left(b-2\right)^2\le0\Rightarrow a=b=2\)

\(\Rightarrow x=y=4\)

18 tháng 8 2018

\(\left(1+\dfrac{1}{x}\right)\left(1+\dfrac{1}{y}\right)\left(1+\dfrac{1}{z}\right)=8\)

=>\(8xyz=xyz+\sum x+\sum xy+1\)

=>\(\sum x^2+14xyz=\left(\sum x\right)^2+2\sum x+2\)

mặt khác

\(8=\left(1+\dfrac{1}{x}\right)\left(1+\dfrac{1}{y}\right)\left(1+\dfrac{1}{z}\right)\ge\dfrac{8}{\sqrt[3]{xyz}}\rightarrow xyz\ge1\)

đặt \(\sum x=a\left(a\ge3\right)\)

khi đó \(P=\dfrac{a^2+2a+2}{4a^2+15xyz}\le\dfrac{a^2+2a+2}{4a^2+15}\)

\(\dfrac{a^2+2a+2}{4a^2+15}=\dfrac{1}{3}-\dfrac{\left(a-3\right)^2}{12a^2+45}\le\dfrac{1}{3}\)

vậy max bằng 1/3 khi x=y=z=1

18 tháng 8 2018

@Lightning Farron @Akai Haruma @Vũ Tiền Châu

20 tháng 3 2020

Đúng là chơi lừa bịp thực sự bài này rất dễ đây là cách giải:

ta có: \(\left(x+y\right)^2+\left(y+z\right)^4+.....+\left(x+z\right)^{100}\ge0\)còn \(-\left(y+z+x\right)\le0\)  nên phương trình 1 vô lý 

tương tự chứng minh phương trinh 2 và 3 vô lý 

vậy \(\hept{\begin{cases}x=\varnothing\\y=\varnothing\\z=\varnothing\end{cases}}\)

thực sự bài này mới nhìn vào thì đánh lừa người làm vì các phương trình rất phức tạp nhưng nếu nhìn kĩ lại thì nó rất dễ vì các trường hợp đều vô nghiệm

20 tháng 4 2020

\(\left(x+y\right)^2+\left(y+z\right)^4+...+\left(x+z\right)^{100}=-\left(y+z+x\right)\)

Đặt : \(A=\left(x+y\right)^2+\left(y+z\right)^4+...+\left(x+z\right)^{100}\)

Ta dễ dàng nhận thấy tất cả số mũ đều chẵn 

\(=>A\ge0\)(1)

Đặt : \(B=-\left(y+z+x\right)\)

\(=>B\le0\)(2)

Từ 1 và 2 \(=>A\ge0\le B\)

Dấu "=" xảy ra khi và chỉ khi \(A=B=0\)

Do \(B=0< =>y+z+x=0\)(3)

\(A=0< =>\hept{\begin{cases}x+y=0\\y+z=0\\x+z=0\end{cases}}\)(4)

Từ 3 và 4 \(=>x=y=z=0\)

Vậy nghiệm của pt trên là : {x;y;z}={0;0;0}

25 tháng 5 2017

Ta có: \(x^2+y^2+z^2=1\)

\(\Rightarrow0\le x^2,y^2,z^2\le1\)

Theo đề bài thì:

\(2P-2=2\left(xy+yz+zx\right)-2\left(x^2+y^2+z^2\right)+x^2\left(y-z\right)^2+y^2\left(z-x\right)^2+z^2\left(x-y\right)^2\)

\(=-\left(x-y\right)^2-\left(y-z\right)^2-\left(z-x\right)^2+x^2\left(y-z\right)^2+y^2\left(z-x\right)^2+z^2\left(x-y\right)^2\)

\(=\left(x-y\right)^2\left(z^2-1\right)+\left(y-z\right)^2\left(x^2-1\right)+\left(z-x\right)^2\left(y^2-1\right)\le0\)

\(\Rightarrow P\le1\)

Dấu = xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

18 tháng 4 2020

Với \(x^2+y^2+z^2=1\),ta có:

\(P=xy+yz+zx+\frac{1}{2}\left[x^2\left(y-z\right)^2+y^2\left(z-x\right)^2+z^2\left(x-y\right)^2\right]\)

\(=xy+yz+zx+x^2y^2+y^2z^2+z^2x^2-x^2yz-xy^2z-xyz^2\)

\(=x^2y^2+y^2z^2+z^2x^2+xy\left(1-z^2\right)+yz\left(1-x^2\right)+zx\left(1-y^2\right)\)

\(=x^2y^2+y^2z^2+z^2x^2+xy\left(x^2+y^2\right)+yz\left(y^2+z^2\right)+zx\left(z^2+x^2\right)\)

\(=\frac{2x^2y^2+2y^2z^2+2z^2x^2+\left(x^2+y^2\right)^2+\left(y^2+z^2\right)^2+\left(z^2+x^2\right)^2}{2}\)

\(=\frac{2\left(x^4+y^4+z^4+2x^2y^2+2y^2z^2+2z^2x^2\right)}{2}=\frac{2\left(x^2+y^2+z^2\right)^2}{2}=1\)

Đẳng thức xảy ra khi \(x=y=z=\pm\frac{\sqrt{3}}{3}\)

22 tháng 10 2017

ta có: xy+yz+zx=1

=> \(1+x^2=x^2+xy+yz+xz=\left(x+z\right)\left(x+y\right)\)

c/m tương tự ta đc: \(1+y^2=\left(x+y\right)\left(y+z\right)\)

                                \(1+z^2=\left(y+z\right)\left(z+x\right)\)

thay vào A ta đc:

\(A=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(y+z\right)\left(z+x\right)}{\left(x+z\right)\left(x+y\right)}}+y\sqrt{\frac{\left(y+z\right)\left(z+x\right)\left(x+z\right)\left(x+y\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\frac{\left(x+z\right)\left(x+y\right)\left(x+y\right)\left(y+z\right)}{\left(y+z\right)\left(x+z\right)}}\)\(\Rightarrow A=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)

\(\Rightarrow A=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\)

\(\Rightarrow A=2\left(xy+yz+zx\right)\)

\(\Rightarrow A=2\) vì xy+yz+zx=1

NV
10 tháng 6 2020

Đặt \(\left\{{}\begin{matrix}x-y=a\\x-z=b\end{matrix}\right.\) \(\Rightarrow ab=1\)

\(S=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a-b\right)^2}=\frac{a^2+b^2}{a^2b^2}+\frac{1}{\left(a-b\right)^2}=a^2+b^2+\frac{1}{\left(a-b\right)^2}\)

\(S=a^2+b^2-2ab+\frac{1}{\left(a-b\right)^2}+2=\left(a-b\right)^2+\frac{1}{\left(a-b\right)^2}+2\)

\(S\ge2\sqrt{\frac{\left(a-b\right)^2}{\left(a-b\right)^2}}+2=4\) (đpcm)