Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)\(A=\frac{b\left(2a\left(a+5b\right)+\left(a+5b\right)\right)}{a-3b}.\frac{a\left(a-3b\right)}{ab\left(a+5b\right)}=\frac{b\left(a+5b\right)\left(2a+1\right).a\left(a-3b\right)}{\left(a-3b\right).ab\left(a+5b\right)}\)
\(A=2a+1\)=>lẻ với mọi a thuộc z=> dpcm
2) từ: x+y+z=1=> xy+z=xy+1-x-y=x(y-1)-(y-1)=(y-1)(x-1)
tường tự: ta có tử của Q=(x-1)^2.(y-1)^2.(z-1)^2=[(x-1)(y-1)(z-1)]^2=[-(z+y).-(x+y).-(x+y)]^2=Mẫu=> Q=1
3) kiểm tra lại xem đề đã chuẩn chưa
Hướng dẫn :\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{xy+yz+zx}{xyz}=0\Rightarrow xy+yz+zx=0\)
Thay vào:\(x^2+2yz=x^2+yz+yz=x^2+yz-xy-zx=x\left(x-y\right)-z\left(x-y\right)=\left(x-y\right)\left(x-z\right)\)
Tương tự thay vào mà quy đồng
Áp dụng Cauchy:
\(\left(x^2+1\right)\ge2\sqrt{x^2\cdot1}=2x\)(dấu = khi x=1)
\(\left(y^2+4\right)\ge2\sqrt{y^2\cdot4}=4y\)(dấu = khi y=2)
\(\left(z^2+9\right)\ge2\sqrt{z^2\cdot9}=6z\)(dấu = khi z=3)
\(\Rightarrow\left(x^2+1\right)\left(y^2+4\right)\left(z^2+9\right)\ge48xyz\)(dấu = khi x=1, y=2, z=3)
ĐK đề bài => x=1, y=2, z=3. Thay x, y, z vào tính được P.