K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta cần chứng minh biểu thức:

\(A = 3 x^{n} \left(\right. z - y \left.\right) + 3 y^{n} \left(\right. x - z \left.\right) + 3 z^{n} \left(\right. y - x \left.\right)\)

chia hết cho:

\(B = \left(\right. x - y \left.\right)^{3} + \left(\right. y - z \left.\right)^{3} + \left(\right. z - x \left.\right)^{3}\)

với \(x , y , z\) đôi một khác nhau, và \(n \in \mathbb{Z} , n > 1\).


Bước 1: Phân tích mẫu số B

Ta xét:

\(B = \left(\right. x - y \left.\right)^{3} + \left(\right. y - z \left.\right)^{3} + \left(\right. z - x \left.\right)^{3}\)

Sử dụng hằng đẳng thức:

\(a^{3} + b^{3} + c^{3} = 3 a b c \text{khi}\&\text{nbsp}; a + b + c = 0\)

Đặt:

  • \(a = x - y\)
  • \(b = y - z\)
  • \(c = z - x\)

Khi đó:

\(a + b + c = \left(\right. x - y \left.\right) + \left(\right. y - z \left.\right) + \left(\right. z - x \left.\right) = 0 \Rightarrow a^{3} + b^{3} + c^{3} = 3 a b c \Rightarrow B = 3 \left(\right. x - y \left.\right) \left(\right. y - z \left.\right) \left(\right. z - x \left.\right)\)

⇒ Kết luận:

\(B = 3 \left(\right. x - y \left.\right) \left(\right. y - z \left.\right) \left(\right. z - x \left.\right)\)


Bước 2: Phân tích tử số A

Xét:

\(A = 3 x^{n} \left(\right. z - y \left.\right) + 3 y^{n} \left(\right. x - z \left.\right) + 3 z^{n} \left(\right. y - x \left.\right)\)

Rút 3 ra ngoài:

\(A = 3 \left[\right. x^{n} \left(\right. z - y \left.\right) + y^{n} \left(\right. x - z \left.\right) + z^{n} \left(\right. y - x \left.\right) \left]\right.\)

Gọi:

\(A^{'} = x^{n} \left(\right. z - y \left.\right) + y^{n} \left(\right. x - z \left.\right) + z^{n} \left(\right. y - x \left.\right)\)

Mục tiêu: Chứng minh \(A^{'}\) chia hết cho \(\left(\right. x - y \left.\right) \left(\right. y - z \left.\right) \left(\right. z - x \left.\right)\)


Bước 3: Ý tưởng dùng đối xứng và định lý đa thức

Đặt \(f \left(\right. x , y , z \left.\right) = x^{n} \left(\right. z - y \left.\right) + y^{n} \left(\right. x - z \left.\right) + z^{n} \left(\right. y - x \left.\right)\)

Tính đối xứng:

  • Nếu hoán vị các biến, biểu thức \(f \left(\right. x , y , z \left.\right)\) chỉ đổi dấu, không thay giá trị tuyệt đối. Nên \(f \left(\right. x , y , z \left.\right)\) là một đa thức phản đối xứng.

Ta sẽ chứng minh:

\(\left(\right. x - y \left.\right) , \left(\right. y - z \left.\right) , \left(\right. z - x \left.\right) \mid f \left(\right. x , y , z \left.\right)\)

Nếu \(x = y \Rightarrow f \left(\right. x , x , z \left.\right) = x^{n} \left(\right. z - x \left.\right) + x^{n} \left(\right. x - z \left.\right) + z^{n} \left(\right. x - x \left.\right) = x^{n} \left(\right. z - x + x - z \left.\right) + 0 = 0\)

\(x - y \mid f \left(\right. x , y , z \left.\right)\)

Tương tự:

  • \(y = z \Rightarrow f \left(\right. x , y , y \left.\right) = 0 \Rightarrow y - z \mid f\)
  • \(z = x \Rightarrow f \left(\right. x , y , x \left.\right) = 0 \Rightarrow z - x \mid f\)

⇒ Vậy: \(\left(\right. x - y \left.\right) \left(\right. y - z \left.\right) \left(\right. z - x \left.\right) \mid A^{'}\)

\(3 \left(\right. x - y \left.\right) \left(\right. y - z \left.\right) \left(\right. z - x \left.\right) \mid A\)

\(B = 3 \left(\right. x - y \left.\right) \left(\right. y - z \left.\right) \left(\right. z - x \left.\right)\)


Kết luận:

\(A \&\text{nbsp};\text{chia}\&\text{nbsp};\text{h} \overset{ˊ}{\hat{\text{e}}} \text{t}\&\text{nbsp};\text{cho}\&\text{nbsp}; B\)

hay:

\(3 x^{n} \left(\right. z - y \left.\right) + 3 y^{n} \left(\right. x - z \left.\right) + 3 z^{n} \left(\right. y - x \left.\right) \&\text{nbsp};\text{chia}\&\text{nbsp};\text{h} \overset{ˊ}{\hat{\text{e}}} \text{t}\&\text{nbsp};\text{cho}\&\text{nbsp}; \left(\right. x - y \left.\right)^{3} + \left(\right. y - z \left.\right)^{3} + \left(\right. z - x \left.\right)^{3}\)

với mọi số nguyên \(n > 1\), và \(x , y , z\) đôi một khác nhau.


Nếu bạn cần chứng minh bằng phương pháp khác (ví dụ: dùng định lý đồng dư, đa thức hoặc kiểm tra cụ thể), mình có thể hỗ trợ tiếp.

7 tháng 12 2018

B1) Từ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\frac{xy+yz+zx}{xyz}=0\)

\(\Rightarrow xy+yz+zx=0\)

Ta có \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

                                      \(=x^2+y^2+z^2+2.0\)

                                       \(=x^2+y^2+z^2\left(đpcm\right)\)

B2)  \(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0\forall a;b\\\left(b-c\right)^2\ge0\forall b;c\\\left(c-a\right)^2\ge0\forall c;a\end{cases}\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c\left(đpcm\right)}\)

8 tháng 12 2018

\(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right).2=\left(ab+bc+ca\right).2\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Ta có: \(\hept{\begin{cases}\left(a-b\right)^2\ge0\forall a,b\\\left(b-c\right)^2\ge0\forall b,c\\\left(c-a\right)^2\ge0\forall a,c\end{cases}}\)\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)

Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\)

Vậy \(a^2+b^2+c^2=ab+bc+ca\)thì \(a=b=c\)

5 tháng 7 2017

Ace Legona giúp vs ạ bài 1 thui cx đc

1 tháng 11 2016

Lần lượt trừ hai vế của hệ phương trình ta có : \(x^3-y^3=3\left(x-y\right)\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-3\right)=0\)
                                                                    \(\Leftrightarrow x^2+y^2+xy=3\) ( Do \(x\ne y\)).
Làm tương tự như vậy ta có hệ sau :  \(\hept{\begin{cases}x^2+xy+y^2=3\\x^2+xz+z^2=3\\y^2+yz+z^2=3\end{cases}}\) (1)
Làm tương tự như trên, trừ lần lượt từng vế phương trình  ta có:
                                    \(x^2+xy+y^2-\left(x^2+xz+z^2\right)=3-3\) 
                                                          \(\Leftrightarrow xy-xz+y^2-z^2=0\)
                                                          \(\Leftrightarrow\left(y-z\right)\left(x+y+z\right)=0\)
                                                          \(\Leftrightarrow x+y+z=0\)( do \(x\ne y\))
           \(\Rightarrow\left(x+y+z\right)^2=0\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2zx=0\).
Cộng lần lượt từng vế của 3 phương trình ta được : \(2\left(x^2+y^2+z^2\right)+xy+xz+yz=9\).
Đặt \(a=x^2+y^2+z^2,b=xy+zy+zx\) ta có hệ sau:
       \(\hept{\begin{cases}a+2b=0\\2a+b=9\end{cases}\Leftrightarrow\hept{\begin{cases}a=6\\b=-3\end{cases}}}\)
Vậy \(x^2+y^2+z^2=6.\)

                                                          

1 tháng 11 2016

tớ ko bt

22 tháng 7 2017

Ta đặt \(A=\left(x-y\right)^5+\left(y-z\right)^5+\left(z-x\right)^5\) . Ta sẽ phân tích A thành nhân tử:

\(A=\left(x-y+y-z\right)\left[\left(x-y\right)^4-\left(x-y\right)^3\left(y-z\right)+...-\left(x-y\right)\left(y-z\right)^3+\left(y-z\right)^4\right]\)\(\left(z-x\right)^5\)

\(A=\left(x-z\right)\left[\left(x-y\right)^4-\left(x-y\right)^3\left(y-z\right)+...-\left(x-y\right)\left(y-z\right)^3+\left(y-z\right)^4\right]\)\(\left(z-x\right)^5\)

\(A=\left(x-z\right)\left[\left(x-y\right)^4-\left(x-y\right)^3\left(y-z\right)+...-\left(x-y\right)\left(y-z\right)^3+\left(y-z\right)^4-\left(z-x\right)^4\right]\)

\(A=\left(x-z\right).B\)

Ta phân tích \(\left(y-z\right)^4-\left(z-x\right)^4=\left[\left(y-z\right)^2+\left(z-x\right)^2\right]\left(x+y-2z\right)\left(y-x\right)\)

và \(\left(x-y\right)^4-\left(x-y\right)^3\left(y-z\right)+...-\left(x-y\right)\left(y-z\right)^3\)

\(=\left(x-y\right)\left[\left(x-y\right)^3-\left(x-y\right)^2\left(y-z\right)+\left(x-y\right)\left(y-z\right)^2-\left(y-z\right)^3\right]\)

Đặt \(C=\left(x-y\right)^3-\left(x-y\right)^2\left(y-z\right)+\left(x-y\right)\left(y-z\right)^2-\left(y-z\right)^3\)

 \(D=\left[\left(y-z\right)^2+\left(z-x\right)^2\right]\left(x-z+y-z\right)\)

\(=\left(x-z\right)\left(y-z\right)^2+\left(y-z\right)^3-\left(z-x\right)^3+\left(y-z\right)\left(z-x\right)^2\)

\(C-D=\left(y-z\right)\left[-\left(x-y\right)^2-3\left(y-z\right)^2-\left(z-x\right)^2-\left(x-y\right)^2+\left(x-y\right)\left(z-x\right)-\left(z-x\right)^2\right]\)

 \(=\left(y-z\right)\left[5\left(-x^2+xy-y^2-z^2+yz+zx\right)\right]\)

Vậy \(A=5\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

Vậy \(A=\left(x-z\right)\left(x-y\right)\left(y-z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

nên chia hết cho \(5\left(x-y\right)\left(y-z\right)\left(z-x\right)\)

23 tháng 7 2017

e ko hỉu khúc C-D cho lắm

NV
3 tháng 5 2019

\(\frac{3x-3}{6}=\frac{2y+10}{10}=\frac{5z-10}{15}=\frac{3x+2y-5z+17}{1}=\frac{3x+2y-5z+16+1}{1}=1\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x-1}{2}=1\\\frac{y+5}{5}=1\\\frac{z-2}{3}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=0\\z=5\end{matrix}\right.\)

\(\Rightarrow P=3^{2019}+5^{2019}\)

Ta có \(3\equiv-1\left(mod4\right)\Rightarrow3^{2019}\equiv-1\left(mod4\right)\)

\(5\equiv1\left(mod4\right)\Rightarrow5^{2019}\equiv1\left(mod4\right)\)

\(\Rightarrow P\equiv\left(-1+1\right)\left(mod4\right)\Rightarrow P\equiv0\left(mod4\right)\Rightarrow P⋮4\)