Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:Dự đoán dấu = xảy ra khi a = 2; b=3;c=4. Ta có hướng giải như sau:
\(A=\left(\frac{3}{4}a+\frac{3}{a}\right)+\left(\frac{b}{2}+\frac{9}{2b}\right)+\left(\frac{1}{4}c+\frac{4}{c}\right)+\frac{a}{4}+\frac{b}{2}+\frac{3}{4}c\)
Áp dụng BĐT AM-GM,ta được:
\(A\ge2\sqrt{\frac{3}{4}a.\frac{3}{a}}+2\sqrt{\frac{b}{2}.\frac{9}{2b}}+2\sqrt{\frac{1}{4}c.\frac{4}{c}}+\frac{1}{4}\left(a+2b+3c\right)\)
\(\ge3+3+2+\frac{1}{4}.20=13\)
Dấu "=" xảy ra khi a = 2; b=3;c=4
VẬy A min = 13 khi a = 2; b=3;c=4
Bài 1: Bạn xem lại đề, với điều kiện như đã cho thì A có max chứ không có min
Bài 2:
\(A=(a+1)^2+\left(\frac{a^2}{a+1}+2\right)^2=(a+1)^2+\left(\frac{a^2+2a+2}{a+1}\right)^2\)
\(=(a+1)^2+\left(\frac{(a+1)^2+1}{a+1}\right)^2=(a+1)^2+\left(a+1+\frac{1}{a+1}\right)^2\)
\(=t^2+(t+\frac{1}{t})^2=2t^2+\frac{1}{t^2}+2\) (đặt \(t=a+1)\)
Áp dụng BĐT AM-GM:
\(2t^2+\frac{1}{t^2}\geq 2\sqrt{2}\Rightarrow A\geq 2\sqrt{2}+2\)
Vậy $A_{\min}=2\sqrt{2}+2$. Dấu "=" xảy ra khi \(a=\pm \frac{1}{\sqrt[4]{2}}-1\)
Câu hỏi của Kiều Trang - Toán lớp 9 - Học toán với OnlineMath
Cho \(x^4+y^4+z^4=3\). Tìm MAX của \(A=x^2\left(x+y\right)+y^2\left(y+z\right)+z^2\left(z+x\right)\)
Ta có:
\(3x^4+1=x^4+x^4+x^4+1\ge4\sqrt[4]{x^4.x^4.x^4.1}=4x^3\)
Tương tự: \(3y^4+1\ge4y^3\) ; \(3z^4+1\ge4z^3\)
=> \(3\left(x^4+y^4+z^4\right)+3\ge4\left(x^3+y^3+z^3\right)\) (1)
Thay vào:
\(A=x^2\left(x+y\right)+y^2\left(y+z\right)+z^2\left(z+x\right)\)
\(A=x^3+x^2y+y^3+y^2z+z^3+z^2x\)
\(A=x^3+y^3+z^3+\left(x^2y+y^2z+z^2x\right)\)
\(\le x^3+y^3+z^3+\left(\frac{x^3+x^3+y^3+y^3+y^3+z^3+z^3+z^3+x^3}{3}\right)\)
\(=2\left(x^3+y^3+z^3\right)\)
\(=\frac{1}{2}\left[4\left(x^3+y^3+z^3\right)\right]\le\frac{1}{2}\left[3\left(x^4+y^4+z^4\right)+3\right]\)
\(=\frac{1}{2}\left[3.3+3\right]=\frac{12}{2}=6\)
Dấu "=" xảy ra khi: \(x=y=z=1\)
Vậy Max(A) = 6 khi x = y = z = 1
Cần mọi người giúp bài Bất đẳng thức - Diễn Đàn MathScope
t lắm tắt luôn nhé có nhiều câu quá
áp dụng bdt cô si ta có
a) \(x+y+z+\frac{1}{xyz}\ge4\sqrt[4]{\frac{1.xyz}{xyz}}=4\)
vậy Min của T là 4 dấu = xảy ra khi x=y=z=1
b)
áp dụng BDT cosi ta có
\(x+y+Z\ge3\sqrt[3]{xyz}\)
\(\frac{3}{xyz}+3xyz\ge2\sqrt{\frac{3.3xyz}{xyz}}=6\)
+ vế với vế ta được
\(T+3xyz\ge3\sqrt[3]{xyz}+6\)
\(T\ge3\sqrt[3]{xyz}+6-3xyz\)
có \(xyz\le\frac{\left(x+y+Z\right)^2}{27}\Rightarrow-xyz\ge-\frac{\left(x+y+z\right)^2}{27}\) cùng dấu > thay vào được
\(T\ge3\sqrt[3]{xyz}+6-3\frac{\left(x+y+z\right)^3}{27}\)
Có \(x^2+1\ge2x\)
\(y^2+1\ge2y\)
\(z^2+1\ge2z\) (cosy)
+ vế với vế ta được
\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
\(3\ge\left(x+y+z\right)\Rightarrow-\left(x+y+z\right)\ge-3\) cùng dấu > ta thay được
\(\Rightarrow T\ge3\sqrt[3]{xyz}+6-3\frac{\left(3\right)^3}{27}\)
\(\Rightarrow T\ge6\) dấu = xảy ra khi x=y=z=1
3) dự đoán của chúa pain x=y=z = \(\frac{1}{\sqrt{3}}\)
thử thay vào
\(\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+\frac{1}{\frac{1}{\sqrt{3}^3}}\)
số xấu lắm m tự làm đi tương tự câu 1) 2)
1) dự đoán của chúa Pain x=y=z=1
áp dụng BDT cô si ta có
\(x+y+z+\frac{1}{xyz}\ge4\sqrt[4]{\frac{xyz}{xyz}}=4.\)
Vậy Min là 4 dấu = xảy ra khi x=y=z=1
2 chia cả tử cả mẫu cho \(x^2+y^2+z^2=3\) ta được
\(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}=\frac{3}{xyz}\)
thay số ta được
\(\left(x+y+z+\frac{x}{yz}+\frac{z}{xy}+\frac{y}{zx}\right)\)
áp dụng Cô si ta được
\(VT\ge6\sqrt[6]{\frac{x^2y^2z^2}{y^2z^2x^2}}=6\)
vậy Min là 6 dấu = xảy ra khi x=y=z=1
3) TƯỢNG TỰ cậu 2
chia xyz cho 2 vế
\(x^2+y^2+z^2=1\)
ta được
\(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}=\frac{1}{xyz}\)
thay số
\(\left(x+y+z\right)+\left(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}\right)\)
áp dụng BDT cô si ta được
\(\left(\frac{x}{\frac{1}{\sqrt{3}^2}}+\frac{y}{\frac{1}{\sqrt{3}^2}}+\frac{x}{\frac{1}{\sqrt{3}^2}}\right)+\left(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}\right)\ge....\)
tự làm
chuyển vế rồi thêm bớt cậu sẽ có rồi tìm được x=1 y=1 z=4
\(\left(x-2\sqrt{x}+1\right)+\left(y-2\sqrt{y}+1\right)+\left(z-4\sqrt{z}+4\right)=0\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2+\left(\sqrt{z}-2\right)^2=0\)
Ta có
\(A=4\left(a^2+b^2+c^2\right)\ge4\left(a+b+c\right)^2.\frac{1}{3}=3\)