Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề nhé\(\dfrac{1}{3x+3y+2z}=\dfrac{1}{\left(z+x\right)+\left(z+y\right)+\left(x+y\right)+\left(x+y\right)}\)
\(\le\dfrac{1}{16}\left(\dfrac{1}{x+z}+\dfrac{1}{z+y}+\dfrac{1}{x+y}+\dfrac{1}{x+y}\right)\)
CMTT và cộng theo vế:
\(VT\le\dfrac{1}{16}\left(\dfrac{1}{x+z}+\dfrac{1}{z+y}+\dfrac{1}{x+y}+\dfrac{1}{x+y}+\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}+\dfrac{1}{x+z}+\dfrac{1}{x+z}+\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{y+z}\right)\)
\(=\dfrac{1}{16}.24=\dfrac{3}{2}\)
\("="\Leftrightarrow x=y=z=\dfrac{1}{4}\)
Ta có :
\(\dfrac{1}{3x+3y+2z}=\dfrac{1}{\left(2x+y+z\right)+\left(2y+x+z\right)}\)(1)
Áp dụng BĐT \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
\(\Rightarrow\left(1\right)\le\dfrac{1}{4}\left(\dfrac{1}{x+y+x+z}+\dfrac{1}{y+x+y+z}\right)\le\dfrac{1}{4}\left(\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{x+y}+\dfrac{1}{y+z}\right)\right)\)
\(=\dfrac{1}{16}\left(\dfrac{2}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}\right)\)
tương tự với hai ông còn lại sau đó cộng lại ta được:
\(\Sigma\dfrac{1}{3x+3y+2z}\le\dfrac{24}{16}=\dfrac{3}{2}\)
Áp dụng BĐT cosi ta có:
`x^6+y^6+z^6>=3root{3}{x^6y^6z^6}=3x^2y^2z^2`
`=>3x^2y^2z^2<=3`
`=>x^2y^2z^2<=1`
`=>xyz<=1`
`=>(x^3)/(yz)+(y^3)/(zx)+(z^3)/(xy)`
`=(x^4)/(xyz)+(y^4)/(xyz)+(z^4)/(xyz)>=x^4+y^4+z^4(@)`
Áp dụng BĐT bunhia với 2 cặp số `(x^2,y^2,z^2),(x,y,z)`
`=>(x^2+y^2+z^2)(x^4+y^4+z^4)>=(x^3+y^3+z^3)^3`
Mà `(x^3+y^3+z^3)^2>=3(x^3y^3+y^3z^3+z^3x^3)`
`=>(x^2+y^2+z^2)(x^4+y^4+z^4)>=3(x^3y^3+y^3z^3+z^3x^3)(@@)`
Áp dụng BĐT cosi ta có:
`x^6+1+1>=3root{3}{x^6}=3x^2`
`y^6+1+1>=3y^2`
`z^6+1+1>=3z^2`
`=>x^6+y^6+z^6+6>=3(x^2+y^2+z^2)`
`=>9>=3(x^2+y^2+z^2)`
`=>x^2+y^2+z^2<=3`
Kết hợp với `(@@)`
`=>(x^2+y^2+z^2)(x^4+y^4+z^4)>=(x^2+y^2+z^2)(x^3y^3+y^3z^3+z^3x^3)`
`=>x^4+y^4+z^4>=x^3y^3+y^3z^3+z^3x^3`
Kếp hợp với `(@)`
`=>(x^3)/(yz)+(y^3)/(zx)+(z^3)/(xy)>=x^3y^3+y^3z^3+z^3x^3`
Dấu = xảy ra khi `x=y=z=1`
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{x+y}+\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{y+z}\geq \frac{16}{3x+3y+2z}\)
\(\frac{1}{x+z}+\frac{1}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}\geq \frac{16}{3x+2y+3z}\)
\(\frac{1}{z+y}+\frac{1}{z+y}+\frac{1}{x+z}+\frac{1}{x+y}\geq \frac{16}{2x+3y+3z}\)
Cộng theo vế:
\(\Rightarrow 4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\geq 16\left(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\right)\)
\(\Rightarrow \frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\leq \frac{4.6}{16}=\frac{3}{2}\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z=\frac{1}{3}\)
Áp dụng BĐT AM-GM, Ta có
\(\sqrt{x-1}\le\dfrac{1+x-1}{2}=\dfrac{x}{2}\Rightarrow yz\sqrt{x-1}\le\dfrac{xyz}{2}\)
Mà \(xz\sqrt{y-2}\le\dfrac{xz\sqrt{2\left(y-2\right)}}{\sqrt{2}}\le\dfrac{xyz}{2\sqrt{2}}\)
\(yx\sqrt{z-3}\le yx.\dfrac{3+z-3}{2\sqrt{3}}=\dfrac{xyz}{2\sqrt{3}}\)
\(\Rightarrow\dfrac{xy\sqrt{x-1}+xz\sqrt{y-2}+yz\sqrt{z-3}}{xyz}\le\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}=\dfrac{1}{2}+\dfrac{\sqrt{2}}{4}+\dfrac{\sqrt{3}}{6}\)
\(VT=\left(xyz+1\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{x}{z}+\dfrac{z}{y}+\dfrac{y}{x}\)
\(=yz+xz+xy+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{x}{z}+\dfrac{z}{y}+\dfrac{y}{x}\)
\(=\left(yz+xz+xy\right)+\left(\dfrac{x^2}{xz}+\dfrac{z^2}{yz}+\dfrac{y^2}{xy}\right)+\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
\(\ge\left(yz+xz+xy\right)+\dfrac{\left(x+y+z\right)^2}{\left(xz+yz+xy\right)}+\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
(bđt Cauchy Shwarz dạng Engel)
\(\ge2\left(x+y+z\right)+\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
(bđt AM - GM)
\(=\left(x+y+z\right)+\left(x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
\(\ge\left(x+y+z\right)+6\sqrt[6]{x\times y\times z\times\dfrac{1}{x}\times\dfrac{1}{y}\times\dfrac{1}{z}}\)
\(=x+y+z+6=VP\left(\text{đ}pcm\right)\)
Đặt \(x^3=a,y^3=b,z^3=c\Rightarrow abc=1\)
\(P=\dfrac{a^3+b^3}{a^2+ab+b^2}+\dfrac{b^3+c^3}{b^2+bc+c^2}+\dfrac{c^3+a^3}{c^2+ca+a^2}\)
Ta chứng minh bổ đề sau
\(\dfrac{a^3+b^3}{a^2+ab+b^2}\ge\dfrac{a+b}{3}\)
\(\Leftrightarrow3\left(a^3+b^3\right)\ge\left(a+b\right)\left(a^2+ab+b^2\right)\)
\(\Leftrightarrow3\left(a^3+b^3\right)\ge a^3+2ab^2+2a^2b+b^3\)
\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)
Bất đẳng thức cuối luôn đúng. Sử dụng bổ đề ta được
\(P\ge\dfrac{a+b}{3}+\dfrac{b+c}{3}+\dfrac{c+a}{3}=\dfrac{2\left(a+b+c\right)}{3}\ge\dfrac{2.3\sqrt[3]{abc}}{3}=2\)