\(x^3+y^3+z^3=3xyz\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

TL
24 tháng 3 2020

Ta có: x+y+z=0⇔x+y=−z

⇔(x+y)3=(−z)3

⇔x3+3x2y+3xy2+y3=−z3

⇔x3+y3+z3=−3x2y−3xy2

⇔x3+y3+z3=−3xy(x+y)

⇔x3+y3+z3=−3xy(−z)=3xyz(đpcm)

29 tháng 6 2017

Ta có : x+y+z = 0

\(\Rightarrow x+y=-z\)

\(\Leftrightarrow\left(x+y\right)^3=\left(-z\right)^3\)

\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=\left(-z\right)^3\)

\(\Leftrightarrow x^3+y^3+z^3=-3x^2y-3xy^2\)

\(\Leftrightarrow x^3+y^3+z^3=-3xy\left(x+y\right)\)

\(\Leftrightarrow x^3+y^3+z^3=-3xy\left(-z\right)\)

\(\Leftrightarrow x^3+y^3+z^3=3xyz\)

29 tháng 6 2017

x + y + z = 0

x + y = -z

( x + y )3 = ( -z )3

x3 + 3x2y +3xy2 + y3 = -z3

x3 + y3 + z3 = 3x2y - 3xy2

x3 + y3 + z3 = - 3xy ( x + y )

x3 + y3 + z3 = -3xy. ( -z )

x3 + y3 + z3 = 3xyz ( đpcm )

17 tháng 4 2020

nếu x+y+z=0 thì x^3+y^3+z^3=3xyz

19 tháng 8 2019

Lời giải :

\(x+y+z=0\)

\(\Leftrightarrow x+y=-z\)

\(\Leftrightarrow\left(x+y\right)^3=\left(-z\right)^3\)

\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=-z^3\)

\(\Leftrightarrow x^3+y^3+z^3=-3xy\left(x+y\right)\)

\(\Leftrightarrow x^3+y^3+z^3=3xyz\)(đpcm)

19 tháng 8 2019

cảm ơn bạn

4 tháng 10 2019

ta có thể cm x^3+y^3+z^3=3xyz =>(x+y+z)(a^2+b^2+c^2-ab-ac-bc)=0

=>a^2+b^2+c^2-ab-ac-bc=0

nhân cả 2 vế với 2 ta đc

2.(x^2+y^2+z^2-xz-yz-yx)=2.0=0

=2x^2+2y^2+2z^2-2xy-2xz-2yz

=>(y^2-2yx+x^2)+(y^2-2xz+z^2)+(x^2-2xz+z^2)=0

<=> (y-x)^2+(y-z)^2+(x-z)^2=0

mà ta lại có  (y-x)^2>=0 ;  (y-z)^2>=0 ;  (x-z)^2>=0

 và (y-x)^2+(y-x)^2+(x-z)^2=0

 <=>(y-x)^2=0<=>y=x

  <=>(y-z)^2=0 <=>y=z

  <=>(x-z)^2=0<=>x=z

=>x=y=z

9 tháng 8 2016

x^3 + y^3 + z^3 - 3xyz = (x+y)^3 + z^3 - 3x^2y - 3xy^2 - 3xyz 
= (x+y)^3 + z^3 - 3xy(x + y + z) 
= (x+y+z)^3 - 3(x+y)^2.z - 3(x+y)z^2 - 3xy(x + y + z) 
= (x+y+z)^3 - 3(x+y)z(x+ y + z) - 3xy(x + y + z) 
=(x+y+z)[(x+y+z)^2 - 3(x+y)z - 3xy] 

=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)

=1/2(x+y+z)(x^2-2xy+y^2+y^2-2yz+z^2+x^2-2xz+z^2)

=1/2(x+y+z)[(x-y)^2+(y-z)^2+(x-z)^2]

mà x^3 + y^3 + z^3 - 3xyz=0

<=> x+y+z=0

Vậy ...

Chúc bạn học tốt .

hoặc (x-y)^2+(y-z)^2+(x-z)^2 =0 mà (x-y)^2,(y-z)^2,(x-z)^2 >=0 mọi x,y,z

=> x-y=y-z=x-z=0 => x=y=z

5 tháng 11 2017

Ví dụ : Tìm tập hợp các ước của 24

Ư(24) = {1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 24 }

Ta có thể tìm các ước của a bằng cách lần lượt chia a cho

các số tự nhiên từ 1 đến a để xét xem a chia hết cho những

số nào ,khi đó các số ấy là ước của a

\(\dfrac{x^3+y^3-z^3+3xyz}{x+y-z}\)

\(=\dfrac{\left(x+y\right)^3-z^3-3xy\left(x+y\right)+3xyz}{x+y-z}\)

\(=\dfrac{\left(x+y-z\right)\left(x^2+2xy+y^2+xz+yz+z^2\right)-3xy\left(x+y-z\right)}{x+y-z}\)

\(=x^2+y^2+z^2-xy+xz+yz\)

20 tháng 12 2016

nghe có mùi hương của lớp 8

21 tháng 12 2016

Câu này khá dễ .Có thể biến đổi \(x^3+y^3+z^3\) thành hằng đẳng thức rồi trừ gọn đi rồi đặt nhân tử chung để biến đổi như vế phải

5 tháng 10 2017

\(x+y-z=0\)

\(\Leftrightarrow x+y=z\)

Lập phương 2 vế ta có:

\(\left(x+y\right)^3=z^3\)

\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=z^3\)

\(\Leftrightarrow x^3+y^3-z^3=-3x^2y-3xy^2\)

\(\Leftrightarrow x^3+y^3-z^3=-3xy\left(x+y\right)\)

Thay \(x+y=z\) vào biểu thức ta được

\(\Leftrightarrow x^3+y^3-z^3=-3xyz\)(đpcm)