\(\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2017

Ta đặt A =  \(\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)

\(=\left[\left(x+y\right)\left(x+4y\right)\left(x+2y\right)\left(x+3y\right)\right]+y^4\)

\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

Đặt \(x^2+5xy+4y^2=t\Rightarrow A=t\left(t+2y^2\right)+y^4\)

\(=t^2+2ty^2+y^4=\left(t+y^2\right)^2\)

Do x, y nguyên nên t nguyên, vậy thì t + y2 cũng nguyên. Suy ra A là số chính phương.

6 tháng 11 2017

cô huyền giỏi quá. Nhờ có cô mà em đã biết làm bài này rồi ạ

27 tháng 9 2015

Ta có \(A=\left(x+y\right)\left(x+4y\right)\left(x+2y\right)\left(x+3y\right)+y^4=\left(x^2+5yx+4y^2\right)\left(x^2+5yx+6y^2\right)+y^4\)

              \(=\left(t-y^2\right)\left(t+y^2\right)+y^4=t^2-y^4+y^4=t^2\) là số chính phương. Ở đây \(t=x^2+5yx+5y^2.\)

 

27 tháng 9 2015

à em hiểu rồi lây\(\left[\left(x+y\right)\left(x+4y\right)\right]\left[\left(x+2y\right)\left(x+3y\right)\right]\)  vì y+4y=2y+3ysau đó dùng đặt với \(t=x^2-5xy+\frac{4y^2+6y^2}{2}\)
 

2 tháng 1 2019

Ta có: \(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)

\(A=\left(x+y\right)\left(x+4y\right)\left(x+2y\right)\left(x+3y\right)+y^4\)

\(A=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

Đặt \(x^2+5xy+4y^2=a\)

\(\Rightarrow A=a\left(a+2y^2\right)+y^4\)

\(A=a^2+2ay^2+y^4\)

\(A=\left(a+y^2\right)^2\)

Thay \(x^2+5xy+4y^2=a\), ta có

\(A=\left(x^2+5xy+4y^2+y^2\right)^2\)

\(A=\left(x^2+5xy+5y^2\right)^2\)

Vậy với mọi x, y nguyên thì A là số chính phương.

Giải hệ phương trình: 1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\) 2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\) 3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\) 4....
Đọc tiếp

Giải hệ phương trình:

1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\)

2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\)

3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\)

4. \(\left\{{}\begin{matrix}9\sqrt{\dfrac{41}{2}\left(x^2+\dfrac{1}{2x+y}\right)}=3+40x\\x^2+5xy+6y=4y^2+9x+9\end{matrix}\right.\)

5. \(\left\{{}\begin{matrix}\sqrt{xy+\left(x-y\right)\left(\sqrt{xy}-2\right)}+\sqrt{x}=y+\sqrt{y}\\\left(x+1\right)\left[y+\sqrt{xy}+x\left(1-x\right)\right]=4\end{matrix}\right.\)

6. \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\dfrac{x^2+4y^2}{2}}+\sqrt{\dfrac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)

7. \(\left\{{}\begin{matrix}x^3-12z^2+48z-64=0\\y^3-12x^2+48x-64=0\\z^3-12y^2+48y-64=0\end{matrix}\right.\)

0
18 tháng 8 2015

Đề bài thực chất thiếu điều kiện \(xyz\ne0.\) Bây giờ ta sẽ giải bài toán với thêm điều kiện bổ sung này:

Theo giả thiết \(x+y+z=xyz\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1.\)

Khi đó \(\frac{x}{1+x^2}=\frac{\frac{1}{x}}{\frac{1}{x^2}+1}=\frac{\frac{1}{x}}{\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{x}+\frac{1}{z}\right)}=\frac{xyz}{\left(x+y\right)\left(x+z\right)}.\)

Chứng minh tương tự, \(\frac{y}{1+y^2}=\frac{xyz}{\left(y+x\right)\left(y+z\right)},\frac{z}{1+z^2}=\frac{xyz}{\left(z+x\right)\left(z+y\right)}\).

Từ đó suy ra vế trái bằng \(\frac{xyz\left(y+z\right)+2xyz\left(z+x\right)+3xyz\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}.\)   (ĐPCM).