\(x^2+y^2=1\)    .Tìm GTLN,GTNN của biểu thức

S=

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2018

sorry  mk mới lớp 8

19 tháng 12 2018

\(M=\sqrt{3}xy+y^2=\frac{1}{2}\left(x^2+2\sqrt{3}xy+3y^2\right)-\frac{1}{2}x^2-\frac{1}{2}y^2\)

\(=\frac{1}{2}\left(x+\sqrt{3}y\right)^2-\frac{1}{2}\ge-\frac{1}{2}\).

Nên GTNN của M là \(-\frac{1}{2}\) đạt được khi  \(x=-\sqrt{3}y\Rightarrow x^2=3y^2\Rightarrow4y^2=1\Rightarrow y=\pm\frac{1}{2}\)

 +,Với \(y=\frac{1}{2}\Rightarrow x=-\frac{\sqrt{3}}{2}\)

+,Với \(y=-\frac{1}{2}\Rightarrow x=\frac{\sqrt{3}}{2}\)

Ta lại có:\(M=\sqrt{3}xy+y^2\le\frac{3x^2+y^2}{2}+y^2=\frac{3x^2+3y^2}{2}=\frac{3}{2}\)

Nên GTLN của M là \(\frac{3}{2}\) đạt được khi \(\sqrt{3}x=y\Rightarrow3x^2=y^2\Rightarrow4x^2=1\Rightarrow x=\pm\frac{1}{2}\)

 +,Với \(x=\frac{1}{2}\Rightarrow y=\frac{\sqrt{3}}{2}\)

 +,Với \(x=-\frac{1}{2}\Rightarrow y=-\frac{\sqrt{3}}{2}\)

19 tháng 12 2018

M=3xy+y2=21​(x2+23​xy+3y2)−21​x2−21​y2

=\frac{1}{2}\left(x+\sqrt{3}y\right)^2-\frac{1}{2}\ge-\frac{1}{2}=21​(x+3​y)2−21​≥−21​.

Nên GTNN của M là -\frac{1}{2}−21​ đạt được khi  x=-\sqrt{3}y\Rightarrow x^2=3y^2\Rightarrow4y^2=1\Rightarrow y=\pm\frac{1}{2}x=−3yx2=3y2⇒4y2=1⇒y=±21​

 +,Với y=\frac{1}{2}\Rightarrow x=-\frac{\sqrt{3}}{2}y=21​⇒x=−23​​

+,Với y=-\frac{1}{2}\Rightarrow x=\frac{\sqrt{3}}{2}y=−21​⇒x=23​​

Ta lại có:M=\sqrt{3}xy+y^2\le\frac{3x^2+y^2}{2}+y^2=\frac{3x^2+3y^2}{2}=\frac{3}{2}M=3xy+y2≤23x2+y2​+y2=23x2+3y2​=23​

Nên GTLN của M là \frac{3}{2}23​ đạt được khi \sqrt{3}x=y\Rightarrow3x^2=y^2\Rightarrow4x^2=1\Rightarrow x=\pm\frac{1}{2}3x=y⇒3x2=y2⇒4x2=1⇒x=±21​

 +,Với x=\frac{1}{2}\Rightarrow y=\frac{\sqrt{3}}{2}x=21​⇒y=23​​

 +,Với x=-\frac{1}{2}\Rightarrow y=-\frac{\sqrt{3}}{2}x=−21​⇒y=−23​​

13 tháng 7 2018

\(\sqrt{x-1}-y\sqrt{y}=\sqrt{y-1}-x\sqrt{x}\)

\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{y-1}\right)+\left(x\sqrt{x}-y\sqrt{y}\right)=0\)

\(\Leftrightarrow\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}+\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)\left(\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x-1}+\sqrt{y-1}}+x+\sqrt{xy}+y\right)=0\)

\(\Leftrightarrow x=y\)

\(\Rightarrow S=2x^2-8x+5=2\left(x-2\right)^2-3\ge-3\)

16 tháng 7 2018

Tại sao từ:\(\left(\sqrt{x-1}-\sqrt{y-1}\right)\)  lại => đc: \(\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}\)??????????

14 tháng 6 2019

Mình nghĩ là làm như này nè:
Dễ cm:
+: \(\left(a+b\right)^2\le\)\(2\left(a^2+b^2\right)\)(với mọi a, b) ... Áp dụng => \(\left(x+y\right)^2\le\)\(2\)<=> \(-\sqrt{2}\le x+y\)\(\le\sqrt{2}\)
+: \(\sqrt{a+b}\le\)\(\sqrt{a}+\sqrt{b}\)\(\le\sqrt{2\left(a+b\right)}\)(Cái đầu dùng tương đương còn cái hai dùng bđt BCS)
ÁP dụng =>\(\sqrt{8-5\sqrt{2}}\le\) \(\sqrt{8+5\left(x+y\right)}\le\)\(T\)\(\le\sqrt{16+10\left(x+y\right)}\)\(\le\sqrt{16+10\sqrt{2}}\)
Dấu "=" <=> ...

14 tháng 6 2019

Bạn @Đậu Đậu gì đó ơi, Bạn giải tới đó thì max=\(16+10\sqrt{2}\)thì mình hiểu rồi , còn min =??? ghi rõ hộ mình nhé

29 tháng 8 2021

Giá trị lớn nhất là 2/17

29 tháng 8 2021

\(\dfrac{2}{17}\)

14 tháng 10 2017

x + y = 1

tim min

1/(x^2 + y^2) + 2/(xy) -4xy

29 tháng 8 2021

Giá trị nhỏ nhất là căn 82

29 tháng 8 2021

\(\dfrac{1}{3}\)

30 tháng 9 2016

Ta có y2 = 1 - x2

=> 1 - x2 \(\ge0\)

<=> \(-1\le x\le1\)

Kết hợp với điều kiện ban đầu ta được

\(0\le x\le1\)

P = \(\sqrt{1+2x}+\sqrt{1+2\sqrt{1-x^2}}\)

Hàm số này bị chặn 2 đầu nên ta xét x = 0 và x = 1 thì P = 1 + \(\sqrt{3}\)

Vậy GTNN là 1 + \(\sqrt{3}\)khi x = (0;1)