Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Theo bài ra, ta gọi \(y=x-1,z=x+1\)
\(x^3+y^3+z^3\)
\(=x^3+\left(x-1\right)^3+\left(x+1\right)^3\)
\(=3x^3+6x\)
\(=3\left(x^3-x\right)+9x\)
\(=3x\left(x^2-1\right)+9x\)
\(=3x\left(x-1\right)\left(x+1\right)+9x⋮9\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Giả sử \(x,y \vdots 3\)
=> \(x^2 ;y^2 \) : 3 dư 1
=> \(z^2 = x^2+y^2 \) : 3 dư 2 ( vô lý vì \(z^2\) là số chính phương )
Vậy \(x\vdots 3y\vdots 3 => xy \vdots 3\)
Chứng minh tương tự \(xy \vdots 4\)
\((3;4) =1 => xy \vdots 12\)
![](https://rs.olm.vn/images/avt/0.png?1311)
giải câu c nha
xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)
Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6
tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6
\(\Rightarrow\)A chia hết cho 6
=> a3+b3+c3 -a-b-c chia hết cho 6
mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6
k cho tớ xog tớ giải hai câu còn lại cho nha
a/ n3 - n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6
x; y không chia hết cho 3 nên có dạng 3x+ 1 hoặc 3x+2 (x \(\in Z\))
giả sử x = 3k +1; y= 3m +1 (k;m \(\in Z\)) => \(x^6-y^6=\left(x^3-y^3\right)\left(x^3+y^3\right)=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x^3+y^3\right)\)= (x3 +y3)(3k +1 -3m -1)[(3k+1)2 +(3k+1)(3m+1) + (3m+1)2 ] = (x3+y3).9(k-m)(3k2 + 3k +3km + 3m2 +3m + 1) chia hết cho 9
giả sử x= 3k +1; y = 3m +2
\(x^6-y^6=\left(x^3+y^3\right)\left(x^3-y^3\right)=\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^3-y^3\right)=\)(3k+1+ 3m+2)[(3k+1)2 -(3k+1)(3m+2) +(3m+2)2 ](x3 -y3) = 9(k+m+1)(3k2 +3m2 +3m +1) (x3-y3) chia hết cho 9
chứng minh xong