Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{xy}+\frac{1}{yz}\ge\frac{4}{xy+yz}=\frac{4}{y\left(x+z\right)}=\frac{4}{y\left(4-y\right)}=\frac{4}{-y^2+4y}=\frac{4}{-\left(y^2-4y+4\right)+4}\ge1\)
Dấu "=" xảy ra tại \(x=z=1;y=2\)
Ta có: \(x+y=1\Rightarrow\left(x+y\right)^3=1\)
\(\Rightarrow x^3+y^3+3xy\left(x+y\right)=1\)
\(\Rightarrow x^3+y^3+3xy=1\)
\(\Rightarrow B=\frac{x^3+y^3+3xy}{x^3+y^3}+\frac{x^3+y^3+3xy}{xy}\)
\(=4+\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\)
Áp dụng Bđt Cô-si ta có:
\(\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\ge2\sqrt{\frac{3xy}{x^3+y^3}\cdot\frac{x^3+y^3}{xy}}=2\sqrt{3}\)
\(\Rightarrow B\ge4+2\sqrt{3}\)
Dấu = khi \(\hept{\begin{cases}x+y=1\\x^3+y^3=\sqrt{3xy}\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=1\\1-3xy=\sqrt{3xy}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=1\\3\sqrt{xy}=\frac{-1+\sqrt{5}}{2}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x+y=1\\xy=\frac{6-2\sqrt{5}}{12}\end{cases}}\)
\(\Leftrightarrow x^2-x+\frac{6-2\sqrt{5}}{12}=0\)\(\Leftrightarrow x,y=\frac{1\pm\sqrt{\frac{2\sqrt{5}-3}{3}}}{2}\)
Theo đề ta suy ra \(y\le1-3x\)
\(\Rightarrow\sqrt{xy}\le\sqrt{x\left(1-3x\right)}\)
Ta có \(A=\frac{1}{x}+\frac{1}{\sqrt{xy}}\ge\frac{1}{x}+\frac{1}{\sqrt{x\left(1-3x\right)}}\ge\frac{1}{x}+\frac{1}{\frac{x+\left(1-3x\right)}{2}}=\frac{2}{2x}+\frac{2}{-2x+1}\)
\(=2\left(\frac{1}{2x}+\frac{1}{-2x+1}\right)\ge2.\frac{\left(1+1\right)^2}{2x-2x+1}=8\)
Vậy \(A\ge8\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x=1-3x=y\\\frac{1}{2x}=\frac{1}{-2x+1}\\3x+y=1\end{cases}}\) \(\Leftrightarrow\) \(x=y=\frac{1}{4}\)
đặt 2x+3=a
\(y\sqrt{y}+y=a\sqrt{a}+a\)
=>\(\left(\sqrt{y}-\sqrt{a}\right)\left(y+\sqrt{ay}+a+\sqrt{a}+\sqrt{y}\right)=0\)
=>\(\sqrt{y}=\sqrt{a}\Rightarrow y=2x+3\)
thay vào Q tìm min là xong
Từ điều kiện suy ra \(\sqrt{xy}+\sqrt{x}+\sqrt{y}\ge3\)
Áp dụng BĐT Cô-si, ta có :
\(3\le\sqrt{xy}+\sqrt{x}.1+\sqrt{y}.1\le\frac{x+y}{2}+\frac{x+1}{2}+\frac{y+1}{2}\)
\(\Rightarrow x+y\ge2\)
Ta có : \(\frac{x^2}{y}+y\ge2\sqrt{\frac{x^2}{y}.y}=2x\); \(\frac{y^2}{x}+x\ge2\sqrt{\frac{y^2}{x}.x}=2y\)
\(\Rightarrow\frac{x^2}{y}+\frac{y^2}{x}+x+y\ge2x+2y\)
\(\Rightarrow P=\frac{x^2}{y}+\frac{y^2}{x}\ge x+y\ge2\)
Vậy GTNN của P là 2 khi x = y = 1
x,y>0 => theo bdt AM-GM thì x+y >/ 2 căn (xy)=2 , x^2+y^2 >/ 2xy=2 (do xy=1)
P=(x+y+1)(x^2+y^2)+4/(x+y)
>/ 2(x+y+1)+4/(x+y)=[(x+y)+4/(x+y)]+(x+y+2)
x,y>0=>x+y>0 => theo bdt AM-GM thì P >/ 2.2+2+2=8
minP=8
Thay \(1=\left(x+y\right)^3\)vào biểu thức A ta có :
\(A=\frac{\left(x+y\right)^3}{x^3+y^3}+\frac{\left(x+y\right)^3}{xy}=\frac{x^3+y^3+3xy\left(x+y\right)}{x^3+y^3}+\frac{x^3+y^3+3xy\left(x+y\right)}{xy}\)
\(=1+\frac{3xy}{x^3+y^3}+3+\frac{x^3+y^3}{xy}\)
\(=4+\left(\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\right)\ge4+2\sqrt{\frac{3xy\left(x^3+y^3\right)}{xy\left(x^3+y^3\right)}}\)\(=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\)(chỗ này áp dụng cosi 2 số)
chờ tí tui lm cho