\(\frac{x^2+xy+1}{y^2+xy+1}\) là một số nguyên. Hãy t...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2016

cho 2014=2013+1 thay vào ta có:\(B=x^{2013}-\left(2013+1\right)x^{2012}+\left(2013+1\right)x^{2011}-...-\left(2013+1\right)x^2+\left(2013+1\right)x-1\)

\(=x^{2013}-\left(x+1\right)x^{2012}+\left(x+1\right)x^{2011}-...-\left(x+1\right)x^2+\left(x+1\right)x-1\)

\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}+x^{2011}-...-x^3-x^2+x^2+x-1\)

\(=x-1=2013-1=2012\)

29 tháng 3 2016

nhiều quáhuhu

21 tháng 2 2016

\(\begin{cases}\sqrt{xy}+\frac{1}{\sqrt{xy}}=\frac{5}{2}\\\sqrt{x}+\sqrt{y}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=\frac{9}{2}\end{cases}\)

<=>\(\begin{cases}xy+1=\frac{5\sqrt{xy}}{2}\\\sqrt{xy}.\left(\sqrt{x}+\sqrt{y}\right)+\sqrt{x}+\sqrt{y}=\frac{9\sqrt{xy}}{2}\end{cases}\)

Đặt P=\(\sqrt{xy}\);S=\(\sqrt{x}+\sqrt{y}\)(S2\(\ge\)4P)

Ta có HPT: \(\begin{cases}P^2+1=\frac{5P}{2}\\S.P+P=\frac{9P}{2}\end{cases}\)

Tới đây dễ tự làm 

21 tháng 2 2016

Khử mẫu đặt S P

7/  Em sửa lại đề ạ 

Cho hai số thực dương a, b thỏa mãn a+b=4ab

Chứng minh rằng  \(\frac{a}{4b^2+1}+\frac{b}{4a^2+1}\ge\frac{1}{2}\)

Đổi biến \(\left(a,b\right)\rightarrow\left(\frac{1}{x},\frac{1}{y}\right)\)

Từ giả thiết => x+y=4

Ta có: BĐT cần CM tương đương với:

\(\frac{\frac{1}{x}}{\frac{4}{y^2}+1}+\frac{\frac{1}{y}}{\frac{4}{x^2}+1}\ge\frac{1}{2}\)\(\Leftrightarrow\frac{y^2}{x\left(4+y^2\right)}+\frac{x^2}{y\left(4+x^2\right)}\ge\frac{1}{2}\left(1\right)\)

Áp dụng BĐT Schwarz, ta có:
\(\frac{x^2}{y\left(4+x^2\right)}\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)+xy^2+x^2y}=\frac{16}{16+xy^2+x^2y}\)

Ta chỉ cần chứng minh:

\(xy^2+x^2y\le16\Leftrightarrow xy^2+x^2y\le\frac{1}{4}\left(x+y\right)^3\)

\(\Leftrightarrow xy^2+x^2y\le x^3+y^3\)(luôn đúng)

Do đó (1) đúng. BĐT được chứng minh. Dấu "=" xảy ra khi x=y=2⇔a=b=\(\frac{1}{2}\)

6. (chuyên Hòa Bình)

Cho các số dương x, y, z thỏa mãn: xy+zx+4yz=32

Tìm giá trị nhỏ nhất của\(P=x^2+16y^2+16z^2\)

Áp dụng bất đẳng thức Cauchy cho  ba số dương  x,y,z ta có

\(\hept{\begin{cases}8y^2+\frac{1}{2}x^2\ge2\sqrt{8y^2.\frac{1}{2}x^2}=4xy\\8z^2+\frac{1}{2}x^2\ge2\sqrt{8z^2.\frac{1}{2}x^2}=4xz\\8y^2+8z^2\ge2\sqrt{8y^2.8z^2}=16yz\end{cases}}\)

Cộng từng vế của ba bđt trên ta có

\(P\ge4\left(xy+xz+4yz\right)=4.32=128\)

15 tháng 5 2017

Theo hệ quả của bất đẳng thức Cauchy - Schwarz

\(\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\)

\(x^2+y^2+z^2\le3\)

\(\Rightarrow xy+yz+xz\le3\)

Ta có \(P=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\)

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow P\ge\dfrac{\left(1+1+1\right)^2}{xy+1+yz+1+xz+1}=\dfrac{9}{xy+yz+xz+3}\) (1)

Ta có \(xy+yz+xz\le3\)

\(\Rightarrow xy+yz+xz+3\le6\)

\(\Rightarrow\dfrac{9}{xy+yz+xz+3}\ge\dfrac{9}{6}=\dfrac{3}{2}\) (2)

Từ (1) và (2)

\(\Rightarrow P\ge\dfrac{3}{2}\)

Vậy \(P_{min}=\dfrac{3}{2}\)

Dấu " = " xảy ra khi \(x=y=z=1\)

22 tháng 3 2016

Bạn tham khảo bài của Đinh Tuấn Việt ở Câu hỏi của Tài Nguyễn Tuấn - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath

25 tháng 1 2017

\(m;n\in N\Rightarrow m;n\ge0\)

\(p\) là số nguyên tố

Thỏa mãn \(\frac{p}{m-1}=\frac{m+n}{p}\Leftrightarrow p^2=\left(m-1\right)\left(m+n\right)\)

Do \(\left(m-1\right)\)\(\left(m+n\right)\) là các ước nguyên dương của \(p^2\)

Lưu ý: \(m-1< m+n\left(1\right)\)

\(p\) là số nguyên tố nên \(p^2\)chỉ có các ước nguyên dương là \(1,p\)\(p^2(2)\)

Từ \((1)\)\(\left(2\right)\) ta có \(m-1=1\)\(m+n=p^2\)

\(\Rightarrow m=2\)\(2+n=p^2\)

Vậy\(A=p^2-n=2\)

23 tháng 1 2016

Câu hỏi này của ( Gia linh trần - olm)

30 tháng 10 2018

a) ĐK: \(x\ge0,x\ne1,x\ne\frac{1}{4}\)

\(A=1+\left(\frac{2x+\sqrt{x}-1}{1-x}-\frac{2x\sqrt{x}-\sqrt{x}+x}{1-x\sqrt{x}}\right)\frac{x-\sqrt{x}}{2\sqrt{x}-1}\)

\(A=1+\left[\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right)}-\frac{\sqrt{x}\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}\right]\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}-1}\)

\(A=1+\left[\frac{2\sqrt{x}-1}{1-\sqrt{x}}-\frac{\sqrt{x}\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}\right]\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}-1}\)

\(A=1-\sqrt{x}+\frac{x\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\)

\(A=\frac{x+1}{x+\sqrt{x}+1}\)

Để \(A=\frac{6-\sqrt{6}}{5}\Rightarrow\frac{x+1}{x+\sqrt{x}+1}=\frac{6-\sqrt{6}}{5}\)

\(\Rightarrow5x+5=\left(6-\sqrt{6}\right)x+\left(6-\sqrt{6}\right)\sqrt{x}+6-\sqrt{6}\)

\(\Rightarrow\left(1-\sqrt{6}\right)x+\left(6-\sqrt{6}\right)\sqrt{x}+1-\sqrt{6}=0\)

\(\Rightarrow x-\sqrt{6}.\sqrt{x}+1=0\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=\frac{\sqrt{2}+\sqrt{6}}{2}\\\sqrt{x}=\frac{-\sqrt{2}+\sqrt{6}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=2+\sqrt{3}\\x=2-\sqrt{3}\end{cases}}\left(tmđk\right)\)

b) Xét \(A-\frac{2}{3}=\frac{x+1}{x+\sqrt{x}+1}-\frac{2}{3}=\frac{3x+3-2x-2\sqrt{x}-2}{3\left(x+\sqrt{x}+1\right)}\)

\(=\frac{x-2\sqrt{x}+1}{3\left(x+\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{3\left(x+\sqrt{x}+1\right)}\)

Do \(x\ge0,x\ne1,x\ne\frac{1}{4}\Rightarrow\left(\sqrt{x}-1\right)^2>0\)

Lại có \(x+\sqrt{x}+1=\left(\sqrt{x}+\frac{1}{2}\right)+\frac{3}{4}>0\)

Nên \(A-\frac{2}{3}>0\Rightarrow A>\frac{2}{3}\).

7 tháng 4 2016

3/x+y/3=5/6

<=>3/x=5/6-y/3

<=>3/x=5/6-2y/6=(5-2y)/6

<=>x.(5-2y)=3.6=18

sau đó lập bảng , tìm x,y