K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
16 tháng 6 2021

Đặt \(x=a,1+y=b\).

Ta có: 

\(a^3+b^3=2ab\)

\(\Leftrightarrow a^4+ab^3=2a^2b\)

\(\Leftrightarrow\left(a^2-b\right)^2-b^2=-ab^3\)

\(\Leftrightarrow\left(a^2-b\right)^2=b^2\left(1-ab\right)\)

\(\Leftrightarrow1-ab=\left(\frac{a^2-b}{b}\right)^2\)

Ta có đpcm. 

17 tháng 6 2021

bạn ơi sao mình thay x=1, y=\(\frac{-3+\sqrt{5}}{2}\) ( thỏa mãn đề bài) thì \(\sqrt{1-xy-x}\)không là số hữu tỉ

DD
16 tháng 6 2021

Đặt \(x=a,1+y=b\).

Ta có: 

\(a^3+b^3=2ab\)

\(\Leftrightarrow a^4+ab^3=2a^2b\)

\(\Leftrightarrow\left(a^2-b\right)^2-b^2=-ab^3\)

\(\Leftrightarrow\left(a^2-b\right)^2=b^2\left(1-ab\right)\)

\(\Leftrightarrow1-ab=\left(\frac{a^2-b}{b}\right)^2\)

Ta có đpcm. 

DD
16 tháng 6 2021

\(x^3-y^3=2xy\)

\(\Leftrightarrow x^4-xy^3-2x^2y=0\)

\(\Leftrightarrow\left(x^2-y\right)^2-y^2-xy^3=0\)

\(\Leftrightarrow\left(x^2-y\right)^2=y^2\left(1+xy\right)\)

\(\Leftrightarrow1+xy=\left(\frac{x^2-y}{y}\right)^2\)

Ta có đpcm. 

28 tháng 9 2016

xét 1-1/xy:
=(xy-1)/xy
nhân 4x^3y^3 vào bt:
(4x^4y^4-4x^3y^3)/4x^4y^4
thay 4x^4y^4=(x^3+y^3)^2:
=[(x^3+y^3)^2-4x^3y^3]/(x^3+y^3)^2
=(x^6+y^6-2x^3y^3)/(x^3+y^3)^2
=(x^3-y^3)^2/(x^3+y^3)^2
=>căn(1-1/xy)=lx^3-y^3l / lx^3+y^3l là số hữu tỉ


 

28 tháng 9 2016

Cô phải đọc rất kĩ mới hiểu bài của Minh. Lần sau em chú ý dùng công thức có trong phần \(f\left(x\right)\)để bài làm được trực quan hơn.
Cảm ơn em đã trình bày bài giải !