\(x^2+y^2=1\)

tìm giá trị lớn nhất của biểu thức:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2018

\(2=2\left(x^2+y^2\right)\ge\left(x+y\right)^2\Rightarrow\hept{\begin{cases}\left(x+y\right)^2\le2\\x+y\le\sqrt{2}\end{cases}.}\)

Dấu ''='' xảy ra khi \(\hept{\begin{cases}x=y\\x^2+y^2=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{\sqrt{2}}\\y=\frac{1}{\sqrt{2}}\end{cases}}}\)

\(P=x+y+2\left(x+y\right)^2\le\sqrt{2}+2.2=4+\sqrt{2}\)

16 tháng 5 2017

Đặt: y + z = a thì ta có

\(x\le2a\)

Từ đề bài thì ta có thể suy ra

\(A\le\frac{2x}{a^2}-\frac{1}{\left(x+a\right)^3}\)

\(\le\frac{4}{a}-\frac{1}{27a^3}=\frac{108a^2-1}{27a^3}\)

 \(=16-\frac{\left(6a-1\right)^2\left(12a+1\right)}{27a^3}\le16\)

 Vậy GTLN là \(A=16\). Dấu = xảy ra khi \(\hept{\begin{cases}x=\frac{1}{3}\\y=z=\frac{1}{12}\end{cases}}\) 

16 tháng 5 2017

Làm sao để tách được bởi vì làm sao dự đoán dượcđiểm rơi?

20 tháng 4 2020

Max=3,222222

28 tháng 10 2020

a) Đặt \(\hept{\begin{cases}x+y-z=a\\y+z-x=b\\z+x-y=c\end{cases}\Rightarrow}x=\frac{a+c}{2};y=\frac{b+a}{2};z=\frac{c+b}{2}\)

Suy ra bất đẳng thức cần chứng minh tương đương với: \(\frac{a+b}{2}.\frac{b+c}{2}.\frac{c+a}{2}\ge abc\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8}\ge abc\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Áp dụng bất đẳng thức AM-GM: \(\hept{\begin{cases}a+b\ge2\sqrt{ab}\ge0\\b+c\ge2\sqrt{bc}\ge0\\c+a\ge2\sqrt{ca}\ge0\end{cases}\Rightarrow}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{\left(abc\right)^2}=8abc\)

Vật bất đẳng thức được chứng minh

Dấu "=" xảy ra khi \(a=b=c\Leftrightarrow x=y=z\)

21 tháng 11 2017

a, Áp dụng bđt cosi có : x^2+y^2 >= 2xy

<=> (x+y)^2 >= 4xy

<=> xy <= (x+y)^2/4 = 2^2/4 = 1

=> ĐPCM

Dấu "=" xảy ra <=> x=y=1

k mk nha

21 tháng 11 2017

a, Áp dụng bđt cosi có : x^2+y^2 >= 2xy

<=> (x+y)^2 >= 4xy

<=> xy <= (x+y)^2/4 = 2^2/4 = 1

=> ĐPCM

Dấu "=" xảy ra <=> x=y=1

k mk nha

1 tháng 9 2019

\(E=\left(x^2+y^2\right)+\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+2\left(\frac{x}{y}+\frac{y}{x}\right)\ge4+\frac{4}{x^2+y^2}+2.2=9\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{\sqrt{2}}\)