Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: y + z = a thì ta có
\(x\le2a\)
Từ đề bài thì ta có thể suy ra
\(A\le\frac{2x}{a^2}-\frac{1}{\left(x+a\right)^3}\)
\(\le\frac{4}{a}-\frac{1}{27a^3}=\frac{108a^2-1}{27a^3}\)
\(=16-\frac{\left(6a-1\right)^2\left(12a+1\right)}{27a^3}\le16\)
Vậy GTLN là \(A=16\). Dấu = xảy ra khi \(\hept{\begin{cases}x=\frac{1}{3}\\y=z=\frac{1}{12}\end{cases}}\)
a) Đặt \(\hept{\begin{cases}x+y-z=a\\y+z-x=b\\z+x-y=c\end{cases}\Rightarrow}x=\frac{a+c}{2};y=\frac{b+a}{2};z=\frac{c+b}{2}\)
Suy ra bất đẳng thức cần chứng minh tương đương với: \(\frac{a+b}{2}.\frac{b+c}{2}.\frac{c+a}{2}\ge abc\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8}\ge abc\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Áp dụng bất đẳng thức AM-GM: \(\hept{\begin{cases}a+b\ge2\sqrt{ab}\ge0\\b+c\ge2\sqrt{bc}\ge0\\c+a\ge2\sqrt{ca}\ge0\end{cases}\Rightarrow}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{\left(abc\right)^2}=8abc\)
Vật bất đẳng thức được chứng minh
Dấu "=" xảy ra khi \(a=b=c\Leftrightarrow x=y=z\)
a, Áp dụng bđt cosi có : x^2+y^2 >= 2xy
<=> (x+y)^2 >= 4xy
<=> xy <= (x+y)^2/4 = 2^2/4 = 1
=> ĐPCM
Dấu "=" xảy ra <=> x=y=1
k mk nha
a, Áp dụng bđt cosi có : x^2+y^2 >= 2xy
<=> (x+y)^2 >= 4xy
<=> xy <= (x+y)^2/4 = 2^2/4 = 1
=> ĐPCM
Dấu "=" xảy ra <=> x=y=1
k mk nha
\(E=\left(x^2+y^2\right)+\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+2\left(\frac{x}{y}+\frac{y}{x}\right)\ge4+\frac{4}{x^2+y^2}+2.2=9\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{\sqrt{2}}\)
\(2=2\left(x^2+y^2\right)\ge\left(x+y\right)^2\Rightarrow\hept{\begin{cases}\left(x+y\right)^2\le2\\x+y\le\sqrt{2}\end{cases}.}\)
Dấu ''='' xảy ra khi \(\hept{\begin{cases}x=y\\x^2+y^2=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{\sqrt{2}}\\y=\frac{1}{\sqrt{2}}\end{cases}}}\)
\(P=x+y+2\left(x+y\right)^2\le\sqrt{2}+2.2=4+\sqrt{2}\)