Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Do x và y là 2 đại lượng tỉ lệ thuận nên:
\(\frac{x_1}{y_1}=\frac{x_2}{y_2}\Rightarrow\frac{y_1}{x_1}=\frac{y_2}{x_2}\Rightarrow\frac{y_1}{6}=\frac{y_2}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y_1}{6}=\frac{y_2}{12}=\frac{y_2-y_1}{12-6}=\frac{4}{6}=\frac{2}{3}\)
+) \(\frac{y_1}{6}=\frac{2}{3}\Rightarrow y_1=4\)
+) \(\frac{y_2}{12}=\frac{2}{3}\Rightarrow y_2=8\)
Vậy \(y_1=4;y_2=8\)
a: Vì x,y là hai đại lượng tỉ lệ thuận nên \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
\(\Leftrightarrow x_1=\dfrac{y_1}{y_2}\cdot x_2=\dfrac{-3}{5}:\dfrac{1}{9}\cdot3=\dfrac{-3}{5}\cdot27=-\dfrac{81}{5}\)
b: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\) nên \(\dfrac{x_2}{5}=\dfrac{y_2}{-2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:
\(\dfrac{x_2}{5}=\dfrac{y_2}{-2}=\dfrac{y_2-x_2}{-2-5}=\dfrac{-7}{-7}=1\)
Do đó: \(x_2=5;y_2=-2\)
Câu 1:
\(C=2r\cdot3.14=r\cdot6.28\)
Vậy: C và r là hai đại lượng tỉ lệ thuận theo hệ số tỉ lệ k=6,28
Câu 2:
Vì x và y là hai đại lượng tỉ lệ thuận
nên \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
a: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
nên \(\dfrac{x_1}{-2}=\dfrac{4}{6}=\dfrac{2}{3}\)
hay \(x_1=\dfrac{-4}{3}\)
b: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
\(\Leftrightarrow\dfrac{x_1}{-3}=\dfrac{y_1}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_1}{-3}=\dfrac{y_1}{4}=\dfrac{y_1-x_1}{4-\left(-3\right)}=\dfrac{-2}{7}\)
Do đó: \(x_1=\dfrac{6}{7};y_1=-\dfrac{8}{7}\)
Giúp em với ạaa
Giải:
Vì \(x\) và y là hai đại lượng tỉ lệ nghịch nên hệ số tỉ lệ là:
y.\(x\) = k
TH1: Vì \(x1\) = -3; y1 = 6 nên hệ số tỉ lệ k là: -3.6 = -18
Vậy biểu thức biểu thị mối quan hệ giữa x và y là:
y = \(\dfrac{-18}{x}\)