Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có x + y = 25
=> (x + y)2 = 625
=> x2 + y2 + 2xy = 625
=> x2 + y2 + 10 = 625
=> x2 +y2 = 615
b) Ta có x + y = 3
=> (x + y)3 = 27
=> x3 + 3x2y + 3xy2 + y3 = 27
=> x3 + y3 + 3xy(x + y) = 27
=> x3 + y3 + 9xy = 27
Lại có x + y = 3
=> (x + y)2 = 9
=> x2 + y2 + 2xy = 9
=> 2xy = 4
=> xy = 2
Khi đó x3 + y3 + 9xy + 27
=> x3 + y3 + 18 = 27
=> x3 + y3 = 9
c) Ta có x - y = 5
=> (x - y)2 = 25
=> x2 + y2 - 2xy = 25
=> 2xy = -10
=> xy = -5
Khi đó : x3 - y3 = (x - y)(x2 + xy + y2) = 5(15 - 5) = 5.10 = 50
Bài 4.
a) x2 + y2 = x2 + 2xy + y2 - 2xy
= ( x2 + 2xy + y2 ) - 2xy
= ( x + y )2 - 2xy
= 252 - 2.136
= 625 - 272
= 353
b) x + y = 3
⇔ ( x + y )2 = 9
⇔ x2 + 2xy + y2 = 9
⇔ 5 + 2xy = 9 ( gt x2 + y2 = 5 )
⇔ 2xy = 4
⇔ xy = 2
x3 + y3 = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2
= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 )
= ( x + y )3 - 3xy( x + y )
= 33 - 3.2.3
= 27 - 18
= 9
Bài 1.
A = x2 + 2xy + y2 = ( x + y )2 = ( -1 )2 = 1
B = x2 + y2 = ( x2 + 2xy + y2 ) - 2xy = ( x + y )2 - 2xy = (-1)2 - 2.(-12) = 1 + 24 = 25
C = x3 + 3xy( x + y ) + y3 = ( x3 + y3 ) + 3xy( x + y ) = ( x + y )( x2 - xy + y2 ) + 3xy( x + y )
= -1( 25 + 12 ) + 3.(-12).(-1)
= -37 + 36
= -1
D = x3 + y3 = ( x3 + 3x2y + 3xy2 + y3 ) - 3x2y - 3xy2 = ( x + y )3 - 3xy( x + y ) = (-1)3 - 3.(-12).(-1) = -1 - 36 = -37
Bài 2.
M = 3( x2 + y2 ) - 2( x3 + y3 )
= 3( x2 + y2 ) - 2( x + y )( x2 - xy + y2 )
= 3( x2 + y2 ) - 2( x2 - xy + y2 )
= 3x2 + 3y2 - 2x2 + 2xy - 2y2
= x2 + 2xy + y2
= ( x + y )2 = 12 = 1
a) Ta có x3 + y3 = 2
<=> x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 = 2
<=> ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 ) = 2
<=> ( x + y )3 - 3xy( x + y ) = 2
<=> 13 - 3xy = 2
<=> 3xy = -1
<=> xy = -1/3
Lại có x + y = 1
<=> ( x + y )5 = 1
<=> x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5 = 1 ( HĐT bậc 5 này bạn lên mạng tra nhé :)) )
<=> x5 + y5 = 1 - ( 5x4y + 10x3y2 + 10x2y3 + 5xy4 )
<=> x5 + y5 = 1 - [ ( 5x4y + 5xy4 ) + ( 10x3y2 + 10x2y3 ) ]
<=> x5 + y5 = 1 - [ 5xy( x3 + y3 ) + 10x2y2( x + y ) ]
<=> x5 + y5 = 1 - [ 5xy( x3 + y3 ) + 10(xy)2( x + y ) ]
<=> x5 + y5 = 1 - [ 5.(-1/3).2 + 10.(-1/3)2.1 ]
<=> x5 + y5 = 1 - [ -10/3 + 10/9 ]
<=> x5 + y5 = 1 - (-20/9) = 29/9
b) x + y = 8
<=> ( x + y )2 = 64
<=> x2 + 2xy + y2 = 64
<=> 40 + 2xy = 64
<=> 2xy = 24
<=> xy = 12
Ta có : x3 + y3 = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2
= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 )
= ( x + y )3 - 3xy( x + y )
= 83 - 3.12.8
= 512 - 288 = 224
A=3.(5-xy)
ta có: \(\left(x+y\right)^2=9\Leftrightarrow x^2+2xy+y^2=9\Leftrightarrow5+2xy=9\Leftrightarrow xy=2\)
=> A=3(5-2)=9
Bài 1:
Theo bài ra ta có:
\(\left(x-y\right)^2=x^2-2xy+y^2\)
\(=\left(5-y\right)^2-2\times2+\left(5-x\right)^2\)
\(=5^2-2\times5y+y^2-4+5^2-2\times5x+x^2\)
\(=25-10y+y^2+25-10x+x^2-4\)
\(=\left(25+25\right)-\left(10x+10y\right)+x^2+y^2-4\)
\(=50-10\left(x+y\right)+x^2+2xy+y^2-2xy-4\)
\(=50-10\times5+\left(x+y\right)^2-2\times2-4\)
\(=50-50+5^2-4-4\)
\(=25-8=17\)
Vậy giá trị của \(\left(x-y\right)^2\)là 17
Ta có (x+y)^2=x^2+2xy+y^2=9
2xy=9-5=4
xy=2. Ta có x^3+y^3=(x+y)(x^2-xy+y^2)=3(5-2)=3.3=9
Bài 1:
a) (x+y)2=92=81
=> x2+2xy+y2=81
=> x2+2.14+y2=81
=> x2+y2=53
=> x2-2xy+y2=81-2.14=25
=> (x-y)2=25
=> x-y=5 hoặc x-y=-5
b) Câu a đã tính được x2+y2=53
c) Ta có: x3+y3=(x+y)(x2-xy+y2)=9(53-14)=9.39=351
Bài 2:
Ta có: \(x^2+2xy+y^2-4x-4y+1=\left(x+y\right)^2-4\left(x+y\right)+1\)
Mà x+y=1
\(\Rightarrow1^2-4.1+1=-2\)
Bài 3:
Ta có: (x+y)3=x3+3x2y+3xy2+y3
= x3+y3+3xy(x+y)
Mà x+y=1 => (x+y)3=x3+y3+3xy=13=1
Bài 4:
Ta có: \(\left(x+y\right)^2=4^2=16\)
\(\Rightarrow x^2+2xy+y^2=16\Rightarrow10+2xy=16\)
\(\Rightarrow2xy=6\Rightarrow xy=3\)
Lại có: \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=4.\left(10-3\right)\)
\(=4.7=28\)
Bài 5:
Ta có: \(x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)
\(=1\left(x^2+xy+y^2\right)-3xy=x^2+xy+y^2-3xy\)
\(=x^2-2xy+y^2=\left(x-y\right)^2=1\)
Mấy bài này đầu hè làm hết rồi:))
Bài 1:
a) \(xy=14\Rightarrow x=\frac{14}{y}\)
Thay vào: \(\frac{14}{y}+y=9\)
\(\Leftrightarrow y^2+14-9y=0\)
\(\Leftrightarrow\left(y-2\right)\left(y-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=2\\y=7\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=2\end{cases}}\)
+ Nếu: \(\hept{\begin{cases}x=7\\y=2\end{cases}}\Rightarrow x-y=5\)
+ Nếu: \(\hept{\begin{cases}x=2\\y=7\end{cases}}\Rightarrow x-y=-5\)
b) Ta có: \(x+y=9\)
\(\Leftrightarrow\left(x+y\right)^2=81\)
\(\Leftrightarrow x^2+2xy+y^2=81\)
\(\Rightarrow x^2+y^2=81-2xy=81-2.14=53\)
c) Ta có: \(x+y=9\)
\(\Leftrightarrow\left(x+y\right)^3=9^3\)
\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=729\)
\(\Leftrightarrow x^3+y^3=729-3xy\left(x+y\right)=729-3.14.9=351\)
a)
Ta có :
\(x+y=3\)
\(x^2+y^2=5\Leftrightarrow\left(x+y\right)^2-2xy=5\Leftrightarrow9-2xy=5\Leftrightarrow2xy=4\Rightarrow xy=2\)
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=3.\left(5-2\right)=9\)
b)
Ta có :
\(x-y=5\)
\(x^2+y^2=15\Leftrightarrow\left(x-y\right)^2+2xy=15\Leftrightarrow25+2xy=15\Rightarrow xy=-5\)
=> \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=\left(5\right)\left(15+-5\right)=50\)
a) Ta có:\(\left(x+y\right)^2=5^2\)(Vì x + y = 5)
\(\Leftrightarrow x^2+2xy+y^2=25\)
\(\Leftrightarrow x^2+2.4+y^2=25\)
\(\Leftrightarrow x^2+8+y^2=25\)
\(\Leftrightarrow x^2+y^2=17\)
b) \(\left(x+y\right)^2=3^2\)(Vì x + y = 3)
\(\Leftrightarrow x^2+2xy+y^2=9\)
\(\Leftrightarrow2xy+5=9\)
\(\Leftrightarrow2xy=4\)
\(\Leftrightarrow xy=2\)
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=3\left(5-2\right)=9\)
a) ta có:(x+y)2=x2+2xy+y2=>x2+y2=(x+y)2-2xy
thay x+y=5;xy=4 vào biểu thức ta có:
52-2×4=25-8=17
Ta có : x2 + y2 = 5 <=> ( x + y )2 - 2xy = 5 <=> 9 - 2xy = 5 <=> 2xy = 4 <=> xy = 2
=> x3 + y3 = ( x + y )3 - 3xy( x + y ) = 27 - 18 = 9