Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\left(x+y\right)^2=4\Rightarrow x^2+y^2+2xy=4\Rightarrow xy=\frac{4-10}{2}=-3\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=8-6xy=8-6.\left(-3\right)=26\)
Học tốt!!!!!!
Ta có: x + y = 2
<=> (x + y)2 = 22
<=> x2 + y2 + 2xy = 4
<=> 10 + 2xy = 4
<=> 2xy = -6
<=> xy = -3
Khi đó: M = x3 + y3 = (x + y)(x2 - xy + y2) = 2(10 + 3) = 2.13 = 26
\(\frac{x^2+y^2}{xy}=\frac{10}{3}\Rightarrow3x^2+3y^2-10xy=0\)
\(\Rightarrow\left(3x^2-9xy\right)-\left(xy-3y^2\right)=0\Rightarrow3x\left(x-3y\right)-y\left(x-3y\right)=0\)
\(\Rightarrow\left(x-3y\right)\left(3x-y\right)=0\Rightarrow3x-y=0\left(y>x>0\Rightarrow x-3y< 0\right)\Rightarrow3x=y\)
\(M=\frac{x-y}{x+y}=\frac{x-3x}{x+3x}=\frac{-2x}{4x}=-\frac{1}{2}\)
Cho y > x > 0 và \(\frac{x^2+y^2}{xy}=\frac{10}{3}\)
Tính giá trị của biểu thức \(M=\frac{x-y}{x+y}\)
Ta có :\(\frac{x^2+y^2}{xy}=\frac{10}{3}\Rightarrow3x^2+3y^2=10xy\)
\(\Rightarrow M^2=\frac{x^2-2xy+y^2}{x^2+2xy+y^2}=\frac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\frac{10xy-6xy}{10xy+6xy}=\frac{4xy}{16xy}=\frac{1}{4}\)
Vậy M=\(\frac{1}{4}\)
a) A = 5(x + 3)(x - 3) + (2x + 3)2 + (x - 6)2 = 5(x2 - 9) + (4x2 + 12x + 9) + (x2 - 12x + 36) = 10x2
Tại x = -2,A = 10.(-2)2 = 40
b) x2 + y2 = x2 + 2xy + y2 - 2xy = (x + y)2 - 2.(-25) = 102 + 50 = 150
x + y = 2
=> ( x + y )2 = 4
<=> x2 + 2xy + y2 = 4
<=> 2xy + 10 = 4
<=> 2xy = -6
<=> xy = -3
Ta có : M = x3 + y3 = ( x + y )( x2 - xy + y2 ) = 2( 10 + 3 ) = 26
Ta có : \(x+y=2\)
\(\Rightarrow\left(x+y\right)^2=4\)
\(\Rightarrow x^2+y^2+2xy=4\)
Mà \(x^2+y^2=10\)
\(\Rightarrow10+2xy=4\)
\(\Rightarrow2xy=-6\)
\(\Rightarrow xy=-3\)
\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=2\left(10+3\right)=2.13=26\)
Vậy \(x^3+y^3=26\)
* Với M
Ta có M= x2+y2 = x2+y2+2xy-2xy=(x+y)2 - 2xy= (-9)2 - 2.18 = 81- 36 = 45
* Với N
Ta có M = x4 + y4 = (x2)2 + (y2)2 + 2(xy)2 - 2(xy)2 = (x2+y2)2 + 2 (xy)2= 452 + 2. 182= 2673
* Với T
Ta có T = x2 - y2 => chịu
x^2 +y^2 =x^2 + 2xy + y^2 - 2xy
(x+y)^2 - 2xy
(-9)^2-2*18
81 - 36
45
Bài làm
x + y = 4
=> ( x + y )2 = 16
=> x2 + 2xy + y2 = 16
=> 10 + 2xy = 16
=> 2xy = 6
=> xy = 3
Ta có : P = x3 + y3 + 20
= ( x + y )3 - 3xy( x + y ) + 20
= 43 - 3.3.4 + 20
= 64 - 36 + 20
= 48
Ta có:\(x+y=4\Rightarrow\left(x+y\right)^2=16\)
\(\Rightarrow x^2+2xy+y^2=16\)
\(\Rightarrow2xy+10=16\)
\(\Rightarrow2xy=6\Rightarrow xy=3\)
Ta có:\(P=x^3+y^3+20\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+20\)
\(=4\left(10-3\right)+20=48\)
\(x+y=2\)
\(\Rightarrow\)\(\left(x+y\right)^2=4\)
\(\Leftrightarrow\)\(x^2+y^2+2xy=4\)
\(\Leftrightarrow\)\(2xy=-6\) do x2 + y2 = 10
\(\Leftrightarrow\)\(xy=-3\)
\(T=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=2^3-3.\left(-3\right).2=26\)
Vì \(\left(x+y\right)=2\Rightarrow\left(x+y\right)^2=4\Leftrightarrow x^2+y^2+2xy=4\Leftrightarrow2xy=-6\Leftrightarrow xy=-3\)
\(T=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(\Rightarrow T=2.\left(10-xy\right)\)
\(\Rightarrow T=20-2xy=20+6=26\)