Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tìm min max A = \(\frac{4x+3}{x^2+1}\)
b) Cho x + y = 15 Tìm min max B = \(\sqrt{x-4}+\sqrt{y-3}\)
Ukm
It's very hard
l can't do it
Sorry!
1) \(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)\(\Leftrightarrow\)\(x+y\ge8\)
\(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\)\(\Leftrightarrow\)\(xy=2\left(x+y\right)\ge16\)
\(A=\sqrt{x}+\sqrt{y}\ge2\sqrt[4]{xy}\ge2\sqrt[4]{16}=4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=4\)
2) \(B=\sqrt{3x-5}+\sqrt{7-3x}\ge\sqrt{3x-5+7-3x}=\sqrt{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{7}{3}\end{cases}}\)
\(B=\sqrt{3x-5}+\sqrt{7-3x}\le\frac{3x-5+1+7-3x+1}{2}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=2\)
Ta có: \(A+B+2\sqrt{AB}\ge A+B\)
\(\Leftrightarrow\left(\sqrt{A}+\sqrt{B}\right)^2\ge\left(\sqrt{A+B}\right)^2\)
\(\Rightarrow\sqrt{A}+\sqrt{B}\ge\sqrt{A+B}\)(*)
Dấu "=" xảy ra khi và chỉ khi: AB=0
Áp dụng BĐT (*), ta có:
B=\(\sqrt{x-4}+\sqrt{y-3}\ge\sqrt{x-4+y-3}\)
\(\Rightarrow B\ge\sqrt{8}\)
\(\Rightarrow B\ge2\sqrt{2}\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}\left(x-4\right)\left(y-3\right)=0\\x+y=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=4\\y=11\end{cases}}\\\hept{\begin{cases}x=12\\y=3\end{cases}}\end{cases}}\)Bạn tự giải x,y theo phương trình tích ở trên rồi thế xuống dưới, ra kết quả là x=4 ,y=1 hoặc x=2,y=3. Tại máy mình bị lỗi nên không giải tiếp được chỉ bám chữ được thôi. Bạn thông cảm! Mong bài này sẽ giúp ích cho bạn.
DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)
mà \(3x\ge-3\sqrt{5}\)
mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)
min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)
\(Q=x\sqrt{x}+y\sqrt{y}=\left(\sqrt{x}\right)^3+\left(\sqrt{y}\right)^3=\left(\sqrt{x}+\sqrt{y}\right)\left(x+y-\sqrt{xy}\right)\)
\(=x+y-\sqrt{xy}\)
Đặt \(a=\sqrt{x},b=\sqrt{y}\) (\(a,b\ge0\))
Ta đưa bài toán trở về dạng tìm max và min của biểu thức \(Q=a^2+b^2-ab\) biết \(a+b=1\)
\(Q=\left(a+b\right)^2-3ab\ge\left(a+b\right)^2-\frac{3.\left(a+b\right)^2}{4}=\frac{\left(a+b\right)^2}{4}=\frac{1}{4}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}a=b\\a,b\ge0\end{cases}}\Leftrightarrow x=y=\frac{1}{4}\)
Lại có \(\sqrt{x}+\sqrt{y}=1\Rightarrow\hept{\begin{cases}0\le x\le1\\0\le y\le1\end{cases}}\)
Khi đó ta có \(Q\le1\)
Đẳng thức xảy ra khi x = 0 , y = 1 hoặc x = 1 , y = 0
Vậy : minQ = 1/4 <=> x = y = 1/4
maxQ = 1 <=> (x,y) = (0;1) ; (1;0)
Min :AD BĐT vs a,b>0
\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\)
=>\(B=\sqrt{x-4}+\sqrt{y-3}\ge\sqrt{x-4+y-3}\)
Bình phương 2 vế
=> \(B^2\ge x+y-7=8=2\sqrt{2}\)
Vậy Min B=\(2\sqrt{2}\Leftrightarrow\left(x;y\right)=\left(4;11\right);\left(12;3\right)\)
Max: AD BĐT Buhiacopski ta có:
\(B^2=\left(1.\sqrt{x-4}+1.\sqrt{y-3}\right)^2\)
=> \(B^2\le\left(1+1\right)\left(x-4+y-3\right)=2.\left(15-7\right)=16\)
=> B ≤ 4
Vậy Max B=4 ⇔\(\left\{{}\begin{matrix}x\ge4\\y\ge3\\\sqrt{x-4}=\sqrt{y-3}\\x+y=15\end{matrix}\right.\Leftrightarrow\left(x;y\right)=\left(8;7\right)\)