\(B=\sqrt{x-4}+\sqrt{y-3}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2018

Min :AD BĐT vs a,b>0
\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\)
=>\(B=\sqrt{x-4}+\sqrt{y-3}\ge\sqrt{x-4+y-3}\)
Bình phương 2 vế
=> \(B^2\ge x+y-7=8=2\sqrt{2}\)
Vậy Min B=\(2\sqrt{2}\Leftrightarrow\left(x;y\right)=\left(4;11\right);\left(12;3\right)\)
Max: AD BĐT Buhiacopski ta có:
\(B^2=\left(1.\sqrt{x-4}+1.\sqrt{y-3}\right)^2\)
=> \(B^2\le\left(1+1\right)\left(x-4+y-3\right)=2.\left(15-7\right)=16\)
=> B ≤ 4
Vậy Max B=4 ⇔\(\left\{{}\begin{matrix}x\ge4\\y\ge3\\\sqrt{x-4}=\sqrt{y-3}\\x+y=15\end{matrix}\right.\Leftrightarrow\left(x;y\right)=\left(8;7\right)\)

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

Ukm

It's very hard

l can't do it 

Sorry!

 
22 tháng 7 2019

1) \(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)\(\Leftrightarrow\)\(x+y\ge8\)

\(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\)\(\Leftrightarrow\)\(xy=2\left(x+y\right)\ge16\)

\(A=\sqrt{x}+\sqrt{y}\ge2\sqrt[4]{xy}\ge2\sqrt[4]{16}=4\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=4\)

2) \(B=\sqrt{3x-5}+\sqrt{7-3x}\ge\sqrt{3x-5+7-3x}=\sqrt{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{7}{3}\end{cases}}\)

\(B=\sqrt{3x-5}+\sqrt{7-3x}\le\frac{3x-5+1+7-3x+1}{2}=2\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=2\)

1 tháng 8 2019

Ta có: \(A+B+2\sqrt{AB}\ge A+B\)

\(\Leftrightarrow\left(\sqrt{A}+\sqrt{B}\right)^2\ge\left(\sqrt{A+B}\right)^2\)

\(\Rightarrow\sqrt{A}+\sqrt{B}\ge\sqrt{A+B}\)(*)

Dấu "=" xảy ra khi và chỉ khi: AB=0

Áp dụng BĐT (*), ta có:

B=\(\sqrt{x-4}+\sqrt{y-3}\ge\sqrt{x-4+y-3}\)

\(\Rightarrow B\ge\sqrt{8}\)

\(\Rightarrow B\ge2\sqrt{2}\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}\left(x-4\right)\left(y-3\right)=0\\x+y=5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=4\\y=11\end{cases}}\\\hept{\begin{cases}x=12\\y=3\end{cases}}\end{cases}}\)Bạn tự giải x,y theo phương trình tích ở trên rồi thế xuống dưới, ra kết quả là x=4 ,y=1 hoặc x=2,y=3. Tại máy mình bị lỗi nên không giải tiếp được chỉ bám chữ được thôi. Bạn thông cảm! Mong bài này sẽ giúp ích cho bạn.

18 tháng 9 2017

câu 1 

ta có .....

lười viết Min - cốp xki nha

18 tháng 9 2017

DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)

mà \(3x\ge-3\sqrt{5}\)

mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)

min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)

26 tháng 11 2016

\(Q=x\sqrt{x}+y\sqrt{y}=\left(\sqrt{x}\right)^3+\left(\sqrt{y}\right)^3=\left(\sqrt{x}+\sqrt{y}\right)\left(x+y-\sqrt{xy}\right)\)

\(=x+y-\sqrt{xy}\)

Đặt \(a=\sqrt{x},b=\sqrt{y}\) (\(a,b\ge0\))

Ta đưa bài toán trở về dạng tìm max và min của biểu thức \(Q=a^2+b^2-ab\) biết \(a+b=1\)

\(Q=\left(a+b\right)^2-3ab\ge\left(a+b\right)^2-\frac{3.\left(a+b\right)^2}{4}=\frac{\left(a+b\right)^2}{4}=\frac{1}{4}\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}a=b\\a,b\ge0\end{cases}}\Leftrightarrow x=y=\frac{1}{4}\)

Lại có \(\sqrt{x}+\sqrt{y}=1\Rightarrow\hept{\begin{cases}0\le x\le1\\0\le y\le1\end{cases}}\)

Khi đó ta có \(Q\le1\)

Đẳng thức xảy ra khi x = 0 , y = 1 hoặc x = 1 , y = 0

Vậy : minQ = 1/4 <=> x = y = 1/4

maxQ = 1 <=> (x,y) = (0;1) ; (1;0)

26 tháng 11 2016

cảm ơn chị