Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)
Điều kiện để \(\sqrt{x-4}\)có nghĩa \(\Leftrightarrow x-4\ge0\Leftrightarrow x\ge4\)
Điều kiện để \(\sqrt{y-3}\)có nghĩa \(\Leftrightarrow y-3\ge0\Leftrightarrow y\ge3\)
Từ đó \(\Rightarrow x+y\ge3+4\Rightarrow x+y>5\)
Từ đó ta có thể kết luận là biểu thức B không có nghĩa bạn nhé ^^ vì vậy không có GTNN đâu ạ.
Bạn kiểm tra lại đề bài hộ mình nha.
Chúc bạn buổi tối vui vẻ ^^
$B = \sqrt{x-4} + \sqrt{12 -x}$
+) $B^2 = 8 + 2\sqrt{(x-4)(12-x)} \geqslant 8 + 2 \cdot 0 = 8 \implies B \geqslant \sqrt{8}$
Vậy $B_\text{min} = \sqrt{8} \iff (x-4)(12-x) = 0 \iff x =4$ hoặc $x =12 \implies (x;y) =\{ (4;11);(12;3)\}$
+) $B^2 = 8 + 2\sqrt{(x-4)(12-x)} = 8 + 2\sqrt{-x^2 + 16x - 48} = 8 + 2\sqrt{-(x-8)^2 + 16} \leqslant 8 + 2\sqrt{16} = 16 \implies B \geqslant 4$
Vậy $B_\text{max} =4 \iff x = 8 \iff (x;y) = (8;7)$