Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=x^3-y^3-3xy\)
\(\Rightarrow Q=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)
\(\Rightarrow Q=x^2+xy+y^2-3xy\)
\(\Rightarrow Q=x^2-2xy+y^2=\left(x-y\right)^2\)
\(\Rightarrow Q=1^2=1\)
\(\left|x+y\right|\text{nhỏ nhất }\Rightarrow x+y=0\Rightarrow x=-y\)
thay xy=1 và x+y=0, ta có:
\(M=2x^2+2\left(-x^2\right)+3.1-\left(x+y\right)-3=4x^2=\left(2x\right)^2\)
a) Ta có hằng đẳng thức \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Vậy nên \(a^3+b^3+c^3+6=0.\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Rightarrow a^3+b^3+c^3=-6.\)
b) \(x^3+y^3+3xy=x^3+3xy\left(x+y\right)+y^3=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=1.\)
c) \(x^3-y^3-3xy=x^3-3xy\left(x-y\right)-y^3=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=1.\)
Ta có: \(x+y=2\)
\(\Rightarrow\left(x+y\right)^2=2^2\)
\(\Leftrightarrow x^2+2xy+y^2=4\)
\(\Leftrightarrow2xy=4-\left(x^2+y^2\right)\)
\(\Leftrightarrow2xy=4-10=-6\)
\(\Leftrightarrow xy=-3\)
Đặt \(N=x^3+y^3\)
\(\Rightarrow N=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(\Leftrightarrow N=2.\left(10+3\right)\)
\(\Leftrightarrow N=26\)
(Chúc bạn học tốt và tíck cho mìk vs nhá!)
Phan Văn Hiếu Bài của bạn ngay từ dòng đầu đã sai hướng làm rồi nhé :)
Ta có :
\(x^3+y^3+3xy\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)+3xy-3x^2y-3xy^2\)
\(=\left(x+y\right)^3-3xy\left(x+y-1\right)\)
Thay \(x+y=1;\) có :
\(=1^3-3xy\left(1-1\right)\)
\(=1-0\)
\(=1\)
Vậy ...
\(x^3+y^3+3xy=\left(x+y\right)\left(x^2+xy+y^2\right)+3xy\)
\(=x^2+2xy+y^2+2xy\)
\(=2xy\)
đế đây mk chịu
\(x+y=1\)
\(\Leftrightarrow\)\(\left(x+y\right)^2=1\)
\(\Leftrightarrow\)\(x^2+y^2=1-2xy\)
\(x+y=1\)
\(\Leftrightarrow\)\(\left(x+y\right)^3=1\)
\(\Leftrightarrow\)\(x^3+y^3=1-3xy\)
\(H=1-3xy+3xy\left(1-2xy\right)+6x^2y^2\left(xy+y\right)\)
\(=1-6x^2y^2+6x^2y^2\left(xy+y\right)\)
\(=1-6x^2y^2\left(1-xy-y\right)\)
\(=1-6x^2y^2\left(x+y-xy-y\right)\)
\(=1-6x^2y^2\left(x-xy\right)\)
\(=1-6x^3y^2\left(1-y\right)\)
\(=1-6x^3y^2\left(x+y-y\right)\)
\(=1-6x^4y^2\)
mới ra đc đến đây
\(x^3+3xy+y^3\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)
\(=x^2+y^2-xy+3xy\)
\(=x^2+2xy+y^2\)
\(=\left(x+y\right)^2\)
\(=1^2\)
\(=1\)
\(x^3+3xy+y^3=x^3+3xy.1+y^3\)
\(=x^3+3xy\left(x+y\right)+y^3\)
\(=x^3+3x^2y+3xy^2+y^3\)
\(=\left(x+y\right)^3=1\)