\(\frac{1}{\left(x-1\right)^3}+\frac{\left(x-1\right)^3}{y^3}+\frac{1}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2019

Bạn tham khảo tại đây:

Câu hỏi của Phan Thị Hà Vy - Toán lớp 9 - Học toán với OnlineMath

4 tháng 12 2017

Ta có:

\(\dfrac{1}{\left(x-1\right)^3}+1+1+\left(\dfrac{x-1}{y}\right)^3+1+1+\dfrac{1}{y^3}+1+1\)

\(\ge3\left(\dfrac{1}{x-1}+\dfrac{x-1}{y}+\dfrac{1}{y}\right)\)

\(\Rightarrow\dfrac{1}{\left(x-1\right)^3}+\left(\dfrac{x-1}{y}\right)^3+\dfrac{1}{y^3}\ge3\left(\dfrac{1}{x-1}+\dfrac{x-1}{y}+\dfrac{1}{y}-2\right)\)

\(=3\left(\dfrac{3-2x}{x-1}+\dfrac{x}{y}\right)\)

5 tháng 11 2019

Áp dụng BĐT cô si\(\frac{1}{\left(x-1\right)^3}+1+1\ge\sqrt[3]{\frac{1}{\left(x-1\right)^3}\cdot1\cdot1}=\frac{1}{x-1}\)

\(\Rightarrow\frac{1}{\left(x-1\right)^3}\ge\frac{3}{x-1}-2\left(1\right)\)

\(\left(\frac{x-1}{y}\right)^3+1+1\ge3\sqrt[3]{\left(\frac{x-1}{y}\right)^3\cdot1\cdot1}=\frac{3x-3}{y}\)

\(\Rightarrow\left(\frac{x-1}{y}\right)^3\ge\frac{3x-3}{y}-2\left(2\right)\)

\(\frac{1}{y^3}+1+1\ge\sqrt[3]{\frac{1}{y^3}\cdot1\cdot1}=\frac{3}{y}\Rightarrow\frac{1}{y^3}=\frac{3}{y}-2\left(3\right)\)

Cộng vế theo vế của \(\left(1\right);\left(2\right);\left(3\right)\) ta có:

\(VT\ge\frac{3}{x-1}-6+\frac{3x-3}{y}+\frac{3}{y}\)

\(=\frac{3-6x+6}{x-1}+\frac{3x}{y}\)

\(=3\left(\frac{3-2x}{x-1}+\frac{x}{y}\right)\)

17 tháng 1 2016

bài này nhìn như vậy thì khó làm 
nhưng bạn  đặt ẩn phụ thì sẽ hơn rất nhiều
Đặt : x-1=a ; y=b
sau đó dùng cô si nhé 
k thì dùng tương đương

17 tháng 1 2016

Thì bạn làm chi mình coi với

 

8 tháng 11 2019

Câu hỏi của Đỗ Tuấn Linh - Toán lớp 9 - Học toán với OnlineMath