\(\le\)2 tìm  gtnn của  bt

P= \(\frac...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2016

Ta có:

\(P=20\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{xy}\)

\(\ge20\cdot\frac{4}{\left(x+y\right)^2}+\frac{4}{\left(x+y\right)^2}\ge21\)

\(\Rightarrow P\ge21\)

Dấu = khi x=y=1

27 tháng 9 2016

Từ BĐT \(\left(x+y\right)^2\ge4xy\) ta suy ra \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) và \(\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)

Ta có : \(P=\frac{20}{x^2+y^2}+\frac{11}{xy}=20\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{xy}\ge20.\frac{4}{\left(x+y\right)^2}+\frac{4}{\left(x+y\right)^2}\ge\frac{80}{4}+\frac{4}{4}=21\)

Dấu "=" xảy ra khi x = y = 1

Vậy Min P = 21 khi x = y = 1

11 tháng 9 2020

Ta có :

\(P=\frac{20}{x^2+y^2}+\frac{11}{xy}\)

\(=20.\left[\frac{1}{x^2+y^2}+\frac{1}{2xy}\right]+\frac{1}{xy}\)

\(\ge20\cdot\frac{4}{x^2+y^2+2xy}+\frac{4}{\left(x+y\right)^2}\)

\(\ge20\cdot\frac{4}{2^2}+\frac{4}{2^2}=21\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=1\)

Vậy \(P_{min}=21\) khi \(x=y=1\)

NV
24 tháng 9 2019

\(P=20\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{xy}\ge\frac{20.4}{x^2+y^2+2xy}+\frac{4}{\left(x+y\right)^2}=\frac{80}{\left(x+y\right)^2}+\frac{4}{\left(x+y\right)^2}=\frac{84}{\left(x+y\right)^2}\)

\(\Rightarrow P\ge\frac{84}{2^2}=21\Rightarrow P_{min}=21\) khi \(x=y=1\)

13 tháng 10 2019

\(S=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{3}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{\left(x+y\right)^2}+\frac{3}{2xy}+4xy\ge\frac{4}{\frac{1}{4}}+\frac{3}{2xy}+384xy-380xy\)

\(\ge16+2\cdot24-380xy=64-380xy\)

+) \(\frac{1}{2}\ge x+y\ge2\sqrt{xy}\Rightarrow\frac{1}{4}\ge4xy\Leftrightarrow\frac{1}{16}\ge xy\)

\(\Rightarrow-380xy\ge380\cdot\frac{1}{16}=23.75\)

\(\Rightarrow S\ge64-23.75=40.25\)

Dấu = xảy ra khi x=y=1/4

14 tháng 10 2019

Tại sao \(\frac{1}{x^2+y^2}+\frac{1}{2xy}\le\frac{\left(1+1\right)^2}{\left(x+y\right)^2}\)  ?

14 tháng 9 2016

Ta có : \(P=\frac{20}{x^2+y^2}+\frac{11}{xy}=20\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{xy}\)

Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) được \(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\ge\frac{4}{2^2}=1\)

Lại có : \(\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\ge\frac{4}{2^2}=1\)

Suy ra : \(P\ge20+1=21\)

Dấu "=" xảy ra khi và chỉ khi \(\begin{cases}x,y>0\\x+y=2\\x=y\\x^2+y^2=2xy\end{cases}\) \(\Leftrightarrow x=y=1\)

Vậy MIN P = 21 <=> x = y = 1

NV
30 tháng 9 2019

\(A=\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}=\frac{3\left(x^2+y^2\right)}{4xy}+\frac{x^2+y^2}{4xy}+\frac{xy}{x^2+y^2}\)

\(A\ge\frac{3\left(x^2+y^2\right)}{2\left(x^2+y^2\right)}+2\sqrt{\frac{\left(x^2+y^2\right)xy}{4xy\left(x^2+y^2\right)}}=\frac{3}{2}+1=\frac{5}{2}\)

\(A_{min}=\frac{5}{2}\) khi \(x=y\)

1 tháng 10 2019

Cách làm này hình như có chỗ chưa hợp lý

23 tháng 2 2016

\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}\ge1\)
\(\Rightarrow\frac{20}{x^2+y^2}+\frac{10}{xy}\ge20\)(1)
Có: \(x+y\ge2\sqrt{xy}\Rightarrow1\ge xy\ge\frac{1}{xy}\ge1\)(2)
Từ (1) và (2) \(\Rightarrow\frac{20}{x^2+y^2}+\frac{11}{xy}\ge21\)
Dấu "=" xảy ra \(\Leftrightarrow\int^{x+y=2}_{x=y}\Leftrightarrow x=y=1\)