Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Theo BĐT AM-GM có :$(x+y+1)(x^2+y^2)+\dfrac{4}{x+y}\geq (x+y+1).2xy+\dfrac{4}{x+y}=2(x+y+1)+\dfrac{4}{x+y}=(x+y)+(x+y)+\dfrac{4}{x+y}+2\geq 2\sqrt{xy}+2\sqrt{(x+y).\dfrac{4}{x+y}}+2=2+4+2=8$(đpcm)
Dấu \(=\) xảy ra khi \(x=y, xy=1\) và \(x+y=2\) hay \(x=y=1\)
Bài 1:
Áp dụng BĐT Cô-si cho các số dương:
\(x^2+y^2\geq 2xy=2\Rightarrow (x+y+1)(x^2+y^2)+\frac{4}{x+y}\geq 2(x+y+1)+\frac{4}{x+y}(1)\)
Tiếp tục áp dụng BĐT Cô-si:
\(2(x+y+1)+\frac{4}{x+y}=(x+y+2)+[(x+y)+\frac{4}{x+y}]\)
\(\geq (2\sqrt{xy}+2)+2\sqrt{(x+y).\frac{4}{x+y}}=(2+2)+4=8(2)\)
Từ \((1);(2)\Rightarrow (x+y+1)(x^2+y^2)+\frac{4}{x+y}\geq 8\) (đpcm)
Dấu "=" xảy ra khi $x=y=1$
P=1/(x+y)(x^2-xy+y^2)+1/xy
P=1/(x^2-xy+y^2)+1/xy ( vĩ+y=1)
P=1/(x^2-xy+y^2)+3/xy
Đến đây áp dụng bất đẳng thức Svac có
P>=(√3+1)^2/(x+y)^2
P>=(√3+1)^2 (vì x+y=1)
hay P>=4+2√3(đpcm)
1.
Đầu tiên ta cm: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\forall a,b>0\)
Ta có:
\(\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}\ge\frac{2\sqrt{ab}}{ab}=\frac{2}{\sqrt{ab}}\ge\frac{2}{\frac{a+b}{2}}=\frac{4}{a+b}\) (cô si)
Dấu "=" khi a = b.
Áp dụng:
\(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\) \(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{\frac{1}{4xy}\cdot4xy}+\frac{5}{\left(x+y\right)^2}\)
\(=4+2+5=11\)
Vậy MinA = 11 khi \(x=y=\frac{1}{2}\)
\(P=\frac{x^2+1}{x^2-x+1}\Leftrightarrow x^2+1=P\left(x^2-x+1\right)\)
\(\Leftrightarrow x^2+1-Px^2+Px-P=0\)(*)
\(\Leftrightarrow\left(1-P\right)x^2+Px+\left(1-P\right)=0\)
\(\Delta=P^2-4\left(1-P\right)^2\)
\(=P^2-4\left(1-2P+P^2\right)=-3P^2+8P-4\)
Để P có GTNN và GTLN thì phương trình (*) có nghiệm
\(\Leftrightarrow\Delta\ge0\Leftrightarrow-3P^2+8P-4\ge0\)
\(\Leftrightarrow-3P^2+2P+6P-4\ge0\)
\(\Leftrightarrow-P\left(3P-2\right)+2\left(3P-2\right)\ge0\)
\(\Leftrightarrow\left(3P-2\right)\left(2-P\right)\ge0\)
\(\Leftrightarrow\frac{2}{3}\le P\le2\)
Vậy \(min_P=\frac{2}{3}\Leftrightarrow x=-1\); \(max_P=2\Leftrightarrow x=1\)
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
\(3,\)Áp dụng bđt Mincopski \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)hai lần có
\(VT\ge\sqrt{\left(\sqrt{x}+\sqrt{y}\right)^2+\left(\sqrt{yz}+\sqrt{zx}\right)^2}+\sqrt{z+xy}\)
\(\ge\sqrt{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2+\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}\)
\(=\sqrt{x+y+z+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)+\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}\)
\(=\sqrt{1+2t+t^2}\left(t=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)
\(=\sqrt{\left(t+1\right)^2}=t+1=VP\left(Đpcm\right)\)
\(2,\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\frac{2\sqrt{ab}}{2\sqrt{\sqrt{a}.\sqrt{b}}}=\sqrt{\sqrt{ab}}\left(đpcm\right)\)
\(P=\frac{1}{\left(x+y\right)\left(\left(x+y\right)^2-3xy\right)}+\frac{1}{xy}=\frac{1}{1-3xy}+\frac{1}{xy}=\frac{1}{1-3xy}+\frac{3}{3xy}\ge\frac{\left(1+\sqrt{3}\right)^2}{1-3xy+3xy}=4+2\sqrt{3}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\frac{3+\sqrt{6\sqrt{3}-9}}{6}\\y=\frac{3-\sqrt{6\sqrt{3}-9}}{6}\end{matrix}\right.\) và hoán vị
Cụ thể hơn:
\(\frac{1}{1-3xy}+\frac{1}{xy}=\frac{1}{1-3xy}+\frac{3}{3xy}\)
\(=\frac{1^2}{1-3xy}+\frac{\left(\sqrt{3}\right)^2}{3xy}\ge\frac{\left(1+\sqrt{3}\right)^2}{1-3xy+3xy}\)
Dấu "=" xảy ra khi
\(\frac{1-3xy}{1}=\frac{3xy}{\sqrt{3}}\Rightarrow1-3xy=\sqrt{3}xy\)
với 2 số dương a,b ta luôn có
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\):\(\left(a+b\right)^2\ge4ab\)
Áp dụng vào bài toán, ta có
\(\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{2}{2xy}\)
\(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{2}{4xy}\ge\frac{4}{\left(x+y\right)^2}+\frac{2}{\left(x+y\right)^2}=6\)(vì x+y=1)
Ta có: x2+y2≤(x+y)2/2 => 1/(x2+y2)≥2/(x+y)2=2
xy≤(x+y)2/4 => 1/xy≥4/(x+y)2=4
=>1/(x2+y2)+1/xy≥2+4=6
Dấu "=" xảy ra khi x=y=1/2
Tìm x :
a) ( x - 15 ) . 35 = 0
x - 15 = 0 : 35
x - 15 = 0
x = 0 + 15
x = 15
b) 32 ( x - 10 ) = 32
x - 10 = 32 : 32
x - 10 = 1
x = 1 + 10
x = 11
\(\frac{1}{x^3+y^3}+\frac{1}{xy}=\frac{1}{x^2-xy+y^2}+\frac{1}{x}+\frac{1}{y}=1+\frac{3xy}{x^3+y^3}+1+\frac{x}{y}+1+\frac{y}{x}\ge5\)
Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) được
\(VT\ge\frac{4}{\left(x+y\right)^2}\ge4\)
Dấu "=" xảy ra khi x = y = 1/2
Vậy ...........
Cũng ko hẳn là cách khác nhưng xem cho vui v :)
\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}=\frac{1}{x\left(x+y\right)}+\frac{1}{y\left(x+y\right)}\ge\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\ge4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=\frac{1}{2}\)