\(\dfrac{x^2+12}{x+y}+y\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2018

@Lightning Farron

12 tháng 1 2018

@Lightning Farron

AH
Akai Haruma
Giáo viên
8 tháng 8 2017

Lời giải:

Áp dụng BĐT AM-GM:

\(y=x+\frac{1}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{1}{x^2}\geq 3\sqrt[3]{\frac{1}{4}}\)

Do đó \(y_{\min}=3\sqrt[3]{\frac{1}{4}}\)

Dấu bằng xảy ra khi \(\frac{x}{2}=\frac{1}{x^2}\Leftrightarrow x=\sqrt[3]{2}\)

17 tháng 8 2018

ta có

\(\sum x^2+xyz=4\)

\(4+2z\ge2xy+2z+z^2+xyz=\left(2+z\right)\left(z+xy\right)\)

\(2\ge z+xy\)

tương tự 2 mẫu còn lại ta có bđt sau

\(P\ge\sum\dfrac{x^4}{2}+\sum\dfrac{x^6}{6}\ge\sum\dfrac{x^4}{2}+\dfrac{\left(xyz\right)^2}{2}\left(Am-gm\right)\)

\(P\ge\dfrac{\left(\sum x^2+xyz\right)^2}{8}=2\)

17 tháng 8 2018

@Vũ Tiền Châu @Akai Haruma @Lightning Farron @Phùng Khánh Linh @Nhã Doanh

9 tháng 8 2017

bài này bạn cho điều kiện sai rồi \(x\ge0;x\ne-1\) mới đúng nha

ta có : \(x^2\ge0\forall x\)\(x+1\ge1>0\forall x\) \(\Leftrightarrow y=\dfrac{x^2}{x+1}\ge0\forall x\)

\(\Rightarrow\) Min của \(y=\dfrac{x^2}{x+1}\) là 0 khi \(x^2=0\Leftrightarrow x=0\)

vậy Min của \(y=\dfrac{x^2}{x+1}\) là 0 khi \(x=0\)

11 tháng 8 2017

Mình ghi sai đề chút xíu. Phải là x > -1

15 tháng 10 2017

ÁP dụng AM-GM:

\(\sum\dfrac{a^2}{\sqrt{1-a^2}}=\sum\dfrac{a^3}{\sqrt{\left(1-a^2\right).a^2}}\ge\sum\dfrac{a^3}{\dfrac{1}{2}\left(1-a^2+a^2\right)}=2\sum a^3=2\left(đpcm\right)\)

Dấu = không xảy ra

23 tháng 7 2018

Câu hỏi của Anh Tú Dương - Toán lớp 10 | Học trực tuyến

2 tháng 10 2017

mini của mày chịch nhau à hả cu

2 tháng 10 2017

phắn =="

NV
29 tháng 2 2020

1.

\(6=\frac{\sqrt{2}^2}{x}+\frac{\sqrt{3}^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}=\frac{5+2\sqrt{6}}{x+y}\)

\(\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\frac{x}{\sqrt{2}}=\frac{y}{\sqrt{3}}\\x+y=\frac{5+2\sqrt{6}}{6}\end{matrix}\right.\)

Bạn tự giải hệ tìm điểm rơi nếu thích, số xấu quá

2.

\(VT\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)

Đặt \(x+y+z=t\Rightarrow0< t\le1\)

\(VT\ge\sqrt{t^2+\frac{81}{t^2}}=\sqrt{t^2+\frac{1}{t^2}+\frac{80}{t^2}}\ge\sqrt{2\sqrt{\frac{t^2}{t^2}}+\frac{80}{1^2}}=\sqrt{82}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

NV
29 tháng 2 2020

3.

\(\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{1}{a^3}+\frac{1}{a^3}\ge5\sqrt[5]{\frac{a^6}{b^{15}.a^6}}=\frac{5}{b^3}\)

Tương tự: \(\frac{3b^2}{c^5}+\frac{2}{b^3}\ge\frac{5}{a^3}\) ; \(\frac{3c^2}{d^5}+\frac{2}{c^3}\ge\frac{5}{d^3}\) ; \(\frac{3d^2}{a^5}+\frac{2}{d^2}\ge\frac{5}{a^3}\)

Cộng vế với vế và rút gọn ta được: \(3VT\ge3VP\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=d=1\)

4.

ĐKXĐ: \(-2\le x\le2\)

\(y^2=\left(x+\sqrt{4-x^2}\right)^2\le2\left(x^2+4-x^2\right)=8\)

\(\Rightarrow y\le2\sqrt{2}\Rightarrow y_{max}=2\sqrt{2}\) khi \(x=\sqrt{2}\)

Mặt khác do \(\left\{{}\begin{matrix}x\ge-2\\\sqrt{4-x^2}\ge0\end{matrix}\right.\) \(\Rightarrow x+\sqrt{4-x^2}\ge-2\)

\(y_{min}=-2\) khi \(x=-2\)