Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BĐT tương đương với:
\(x+y+z+xy+yz+zx+1\ge3xyz\)
hay : \(7+z\left(6-z\right)+xy\left(1-3z\right)\ge0\)
Vì \(x\le1;y\le2\)nên \(z\ge3\), tức là \(1-3z< 0;3z-5>0\)
Áp dụng BĐT AM-GM, ta có:
\(xy=\frac{1}{2}.2x.y\le\frac{\left(2x+y\right)^2}{8}\le\frac{\left(1+x+y\right)^2}{8}=\frac{\left(7-z\right)^2}{8}\)
Do đó: \(7+z\left(6-z\right)+xy\left(1-3z\right)\ge7+z\left(6-z\right)+\frac{\left(7-z\right)^2}{8}\left(1-3z\right)\)
\(=\frac{1}{8}\left(z-3\right)\left(7-z\right)\left(3z-5\right)=\frac{1}{8}\left(z-3\right)\left(1+x+y\right)\left(3z-5\right)\ge0\)
Đẳng thức xảy ra khi và chỉ khi x=1,y=2,z=3
\(VT=\frac{\left(yz\right)^2}{x^2yz\left(y+z\right)}+\frac{\left(zx\right)^2}{xy^2z\left(z+x\right)}+\frac{\left(xy\right)^2}{xyz^2\left(x+y\right)}\)
\(VT=\frac{2\left(yz\right)^2}{xy+xz}+\frac{2\left(zx\right)^2}{xy+yz}+\frac{2\left(xy\right)^2}{xz+yz}\)
\(VT\ge\frac{2\left(xy+yz+zx\right)^2}{2\left(xy+yz+zx\right)}=xy+yz+zx\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt[3]{2}}\)
Giải:
Ta có: x, y, z >0
Áp dụng BĐT Cô si ta có:
\(\left(x+y\right)\ge2\sqrt{xy}\) và \(\left(\frac{1}{x}+\frac{1}{y}\right)\ge2\sqrt{\frac{1}{xy}}\)
=> \(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge2\sqrt{xy}.2\sqrt{\frac{1}{xy}}=4\)
<=> \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\frac{1}{x+y}\le4\left(\frac{1}{x}+\frac{1}{y}\right)\) (*)
Áp dụng (*) ta có:
\(\frac{1}{2x+y+z}=\frac{1}{x+y+x+z}=\frac{1}{\left(x+y\right)+\left(x+z\right)}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}+\frac{1}{z}\right)\) (1)
\(\frac{1}{x+2y+z}=\frac{1}{x+y+y+z}=\frac{1}{\left(x+y\right)+\left(y+z\right)}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\right)\) (2)
\(\frac{1}{x+y+2z}=\frac{1}{x+z+y+z}=\frac{1}{\left(x+z\right)+\left(y+z\right)}\le\frac{1}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{z}+\frac{1}{y}+\frac{1}{z}\right)\) (3)
Cộng 2 vế của (1), (2), (3) ta có
\(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\) (đpcm)
ôi trờiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii