K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2021

Áp dụng bất đẳng thức cosi ta có:

`x+y>=2\sqrt{xy}`

Mà `x+y=xy`

`=>xy>=2\sqrt{xy}`

`x,y>0=>xy>0` chia hai vế cho `2sqrt{xy}>0` ta có:

`\sqrt{xy}>=2`

`<=>xy>=4`

`=>S>=4`

Dấu "=" xảy ra khi `x=y=2`

20 tháng 7 2019

\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

                                             \(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)

Dấu "=" <=> x= y = 1/2

20 tháng 7 2019

\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)

                                                                                                  \(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" <=> x = 3y

xy(x-y)2=(x+y)2       ĐK:x>y

(x+y)2=[(x+y)2-4xy]xy

 (x+y)2(xy-1)=4x2y2

\(\frac{1}{\left(x+y\right)^2}=\frac{xy-1}{4x^2y^2}=\frac{1}{4}\left(\frac{1}{xy}-\frac{1}{x^2y^2}\right)\)

\(\frac{1}{\left(x+y\right)^2}=\left[-\left(\frac{1}{xy}-\frac{1}{2}\right)^2+\frac{1}{4}\right]\le\frac{1}{16}\)

=> \(x+y\ge4\)

Dấu "=" xảy ra khi \(x=2+\sqrt{2}\),\(y=2-\sqrt{2}\)

3 tháng 1 2017

Đặt \(x+y=a,xy=b,a^2\ge4b\).

Ta có \(1=a+b\le a+\frac{a^2}{4}\Rightarrow a\ge2\sqrt{2}-2\).

Ta lại có \(P=\frac{1}{a}+\frac{a}{b}=\frac{1}{a}+\frac{a}{1-a}\)

Ta sẽ CM \(P\ge k=\frac{5+5\sqrt{2}}{2}\)

Biến đổi tương đương được: \(\left(k+1\right)a^2-\left(k+1\right)a+1\ge0\) (đúng với \(a\ge2\sqrt{2}-2\))

Vậy min\(P=\frac{5+5\sqrt{2}}{2}\) (đẳng thức xảy ra khi \(x=y=\sqrt{2}-1\))

5 tháng 7 2020

Ta có: \(A=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{2xy}+8xy\right)-4xy\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+2\sqrt{\frac{1}{2xy}.8xy}-\left(x+y\right)^2=4+4-1=7\)

Dấu "=" xảy ra khi và chỉ khi x = y = 0,5.

14 tháng 11 2016

Câu hỏi của Nguyễn Phan Ngọc Tú - Toán lớp 9 - Học toán với OnlineMath

31 tháng 7 2017

tham khỏa nè:

Câu hỏi của Nguyễn Phan Ngọc Tú - Toán lớp 9 - Học toán với OnlineMath

coppy của thắng 

10 tháng 12 2016

\(P=x^2+3x+y^2+3y+\frac{9}{x^2+y^2+1}\)

\(=x^2+y^2+1+\frac{9}{x^2+y^2+1}+3x+3y-1\)

\(\ge2.3.\frac{\sqrt{x^2+y^2+1}}{\sqrt{x^2+y^2+1}}+2.3.\sqrt{xy}-1\)

\(=6+6-1=11\)

Dấu = xảy ra khi x = y = 1

21 tháng 12 2017

Áp dụng bđt 1/a + a/b >= 4/a+b với a,b > 0 và bđt côsi thì :

S >= x+y+3 . 4/4x+4y = x+y + 3/x+y = [x+y + 16/9(x+y)] + 11/9(x+y)

>= \(2\sqrt{\left(x+y\right).\frac{16}{9\left(x+y\right)}}\)+ 11/(9.4/3) =  8/3 + 11/12 = 43/12

Dấu "=" xảy ra <=> x=y=2/3

Vậy Min S = 43/12 <=> x=y=2/3

k mk nha

18 tháng 7 2017

Áp dụng BĐT Cauchy có:

 S= \(\frac{1}{x}\)\(\frac{4}{y}\)+\(\frac{9}{z}\)\(\frac{1^2}{x}\)\(\frac{2^2}{y}\)+\(\frac{3^2}{z}\)>= \(\frac{\left(1+2+3\right)^2}{x+y+z}\)\(\frac{6^2}{1}\)=36

Vậy Min S=36

cái đó là bđt schwarts Đ à

27 tháng 7 2016

a, \(P=\left(x^4-8x^3+16x^2\right)+12x^2-48x+35\)

\(=\left(x^2-4x\right)^2+12\left(x^2-4x\right)+36-1\)

\(=\left(x^2-4x+6\right)^2-1\)

\(=\left[\left(x-2\right)^2+2\right]^2-1\)

\(\ge2^2-1=3\)

Cách khác \(P=\left(x-2\right)^2\left[\left(x-2\right)^2+4\right]+3\ge3\)

Đẳng thức xảy ra khi \(x=2.\)

b, \(xy\le\frac{\left(x+y\right)^2}{4}=9\)

Áp dụng bđt Co6si: \(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2}.\frac{1}{y^2}}=\frac{2}{xy}\)

\(Q\ge\frac{102}{xy}+xy=xy+\frac{81}{xy}+\frac{21}{xy}\ge2\sqrt{xy.\frac{81}{xy}}+\frac{21}{9}=\frac{61}{3}.\)

Dấu bằng xảy ra khi \(x=y=3.\)

28 tháng 7 2016

Mk camon bn nhiều nha =))