Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}\ge1\)
\(\Rightarrow\frac{20}{x^2+y^2}+\frac{10}{xy}\ge20\)(1)
Có: \(x+y\ge2\sqrt{xy}\Rightarrow1\ge xy\ge\frac{1}{xy}\ge1\)(2)
Từ (1) và (2) \(\Rightarrow\frac{20}{x^2+y^2}+\frac{11}{xy}\ge21\)
Dấu "=" xảy ra \(\Leftrightarrow\int^{x+y=2}_{x=y}\Leftrightarrow x=y=1\)
xy(x-y)2=(x+y)2 ĐK:x>y
(x+y)2=[(x+y)2-4xy]xy
(x+y)2(xy-1)=4x2y2
\(\frac{1}{\left(x+y\right)^2}=\frac{xy-1}{4x^2y^2}=\frac{1}{4}\left(\frac{1}{xy}-\frac{1}{x^2y^2}\right)\)
\(\frac{1}{\left(x+y\right)^2}=\left[-\left(\frac{1}{xy}-\frac{1}{2}\right)^2+\frac{1}{4}\right]\le\frac{1}{16}\)
=> \(x+y\ge4\)
Dấu "=" xảy ra khi \(x=2+\sqrt{2}\),\(y=2-\sqrt{2}\)
Đặt \(x+y=a,xy=b,a^2\ge4b\).
Ta có \(1=a+b\le a+\frac{a^2}{4}\Rightarrow a\ge2\sqrt{2}-2\).
Ta lại có \(P=\frac{1}{a}+\frac{a}{b}=\frac{1}{a}+\frac{a}{1-a}\)
Ta sẽ CM \(P\ge k=\frac{5+5\sqrt{2}}{2}\)
Biến đổi tương đương được: \(\left(k+1\right)a^2-\left(k+1\right)a+1\ge0\) (đúng với \(a\ge2\sqrt{2}-2\))
Vậy min\(P=\frac{5+5\sqrt{2}}{2}\) (đẳng thức xảy ra khi \(x=y=\sqrt{2}-1\))
\(M=\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{1}{\left(\frac{x}{y}+\frac{y}{x}\right)}=t+\frac{1}{t}\)
\(t=\frac{x}{y}+\frac{y}{x}\ge2\)
\(M=t+\frac{1}{t}=\frac{t}{4}+\frac{1}{t}+\frac{3}{4}t\ge2\sqrt{\frac{t}{4}.\frac{1}{t}}+\frac{3}{4}.2=\frac{5}{2}\)
Min M = 5/2 khi x =y
bainay quy đồng 2 cái đầu rồi dùng phương pháp lựa chọn điểm rơi là ra .
Ta có: \(A=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{2xy}+8xy\right)-4xy\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+2\sqrt{\frac{1}{2xy}.8xy}-\left(x+y\right)^2=4+4-1=7\)
Dấu "=" xảy ra khi và chỉ khi x = y = 0,5.
\(GT\Leftrightarrow x^2+y^2+1+2xy-2x-2y=xy\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2=1-xy\rightarrow xy\le1\)
\(\rightarrow\left(x+y-1\right)^2\le1\Leftrightarrow\left(x+y-2\right)\left(x+y\right)\le0\rightarrow x+y\le2\)
\(\text{Ta có:}P=\frac{1}{xy}+\frac{1}{x^2+y^2}+\frac{\sqrt{xy}}{x+y}=\frac{1}{2xy}+\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)+\frac{\left(x+y\right)\sqrt{xy}}{\left(x+y\right)^2}\)
\(\ge\frac{1}{2xy}+\frac{4}{\left(x+y\right)^2}+\frac{2xy}{\left(x+y\right)^2}=\left(\frac{1}{2xy}+\frac{2xy}{\left(x+y\right)^2}\right)+\frac{4}{\left(x+y\right)^2}\)
\(\ge\frac{2}{x+y}+\frac{4}{\left(x+y\right)^2}\ge\frac{2}{2}+\frac{4}{2^2}=2\)
Vậy MinP=2 <=>x=y=1
Câu hỏi của Nguyễn Phan Ngọc Tú - Toán lớp 9 - Học toán với OnlineMath
tham khỏa nè:
Câu hỏi của Nguyễn Phan Ngọc Tú - Toán lớp 9 - Học toán với OnlineMath
coppy của thắng
\(P=x^2+3x+y^2+3y+\frac{9}{x^2+y^2+1}\)
\(=x^2+y^2+1+\frac{9}{x^2+y^2+1}+3x+3y-1\)
\(\ge2.3.\frac{\sqrt{x^2+y^2+1}}{\sqrt{x^2+y^2+1}}+2.3.\sqrt{xy}-1\)
\(=6+6-1=11\)
Dấu = xảy ra khi x = y = 1
Ta có: \(x+y=xy\Leftrightarrow\frac{1}{x}+\frac{1}{y}=1\)
Mà \(\frac{1}{x}+\frac{1}{y}\ge\frac{\left(1+1\right)^2}{x+y}=\frac{4}{x+y}\)
\(\Rightarrow\frac{4}{x+y}\le1\Rightarrow x+y\ge4\)
Dấu "=" xảy ra khi: \(x=y=2\)