Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.
\(•x=3+\sqrt{2}\\ x^2=\left(3+\sqrt{2}\right)^2\\ x^2=9+2.3.\sqrt{2}+2\\ x^2=11+6\sqrt{2}\\• y=\sqrt{11+6\sqrt{2}}\\ y^2=\left(\sqrt{11+6\sqrt{2}}\right)^2\\ y^2=11+6\sqrt{2}\)
\(\Rightarrow x^2=y^2=11+6\sqrt{2}\)
1. ta có : \(4\sqrt{7}=\sqrt{112}\)
\(3\sqrt{3}=\sqrt{27}\)
ta thấy : \(\sqrt{112}>\sqrt{27}\) hay \(4\sqrt{7}>3\sqrt{3}\)
2. \(\dfrac{1}{4}\sqrt{82}=\sqrt{\dfrac{41}{8}}\)
\(6\sqrt{\dfrac{1}{7}}=\sqrt{\dfrac{36}{7}}\)
ta thấy :\(\sqrt{\dfrac{41}{8}}< \sqrt{\dfrac{36}{7}}\) hay \(\dfrac{1}{4}\sqrt{82}< 6\sqrt{\dfrac{1}{7}}\)
3. \(x^2=\left(3+\sqrt{2}\right)^2\)
\(y^2=11+6\sqrt{2}\)=\(\left(3+\sqrt{2}\right)^2\)
ta thấy : \(x^2=y^2\Rightarrow x=y\)
a) Ta có:
\(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n}-\sqrt{n+1}}{n-n-1}=-\sqrt{n}+\sqrt{n+1}\)
\(\Rightarrow A=...=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-...-\sqrt{48}+\sqrt{49}=-1+7=6\)
a: \(M=\dfrac{x+6\sqrt{x}-3\sqrt{x}+18-x}{x-36}\)
\(=\dfrac{3\left(\sqrt{x}+6\right)}{x-36}=\dfrac{3}{\sqrt{x}-6}\)
b: \(N=\dfrac{x^2}{y}\cdot\sqrt{xy\cdot\dfrac{y}{x}}-x^2\)
\(=\dfrac{x^2}{y}\cdot y-x^2=0\)
cho\(\Delta ABC\)có 3 góc nhọn, đường cao BE, CF cắt nhau tại H. Qua A vẽ các đường thảng song song với BE và CF lần lượt cắt các đường thẳng CF và BE tại P và Q
1) CM: AH.AB=QA.BC
2)CM: BF.BA+CE.CA=BC2
3) Đường trung tuyến AM của tam giác ABC cắt PQ tại K. CM: 4 điểm A, K, E, Q cùng thuộc một đường tròn
a: \(=\dfrac{2\sqrt{7}-10-6+\sqrt{7}}{4}+\dfrac{24+6\sqrt{7}-20+5\sqrt{7}}{9}\)
\(=\dfrac{3\sqrt{7}-16}{4}+\dfrac{4+11\sqrt{7}}{9}\)
\(=\dfrac{27\sqrt{7}-144+16+44\sqrt{7}}{36}=\dfrac{71\sqrt{7}-128}{36}\)
b: \(=\dfrac{\sqrt{y}\left(x+y\right)}{\sqrt{xy}}\cdot\dfrac{\sqrt{x}-\sqrt{y}}{x+y}\)
\(=\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}}\)
c: \(=\left(\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)+3\sqrt{x}-1}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right)\cdot\dfrac{3\sqrt{x}-1}{3\sqrt{x}-5}\)
\(=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1+3\sqrt{x}-1}{3\sqrt{x}+1}\cdot\dfrac{1}{3\sqrt{x}-5}\)
\(=\dfrac{3x+\sqrt{x}-2}{\left(3\sqrt{x}+1\right)}\cdot\dfrac{1}{3\sqrt{x}-5}\)
\(=\dfrac{3x+\sqrt{x}-2}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-5\right)}\)
a: \(\dfrac{5}{4-\sqrt{11}}+\dfrac{1}{3+\sqrt{7}}-\dfrac{6}{\sqrt{7}-2}-\dfrac{\sqrt{7}-5}{2}\)
\(=4+\sqrt{11}+\dfrac{3}{2}-\dfrac{\sqrt{7}}{2}-4-2\sqrt{7}-\dfrac{1}{2}\sqrt{7}+\dfrac{5}{2}\)
\(=4+\sqrt{11}-3\sqrt{7}\)
b: \(\dfrac{\sqrt{x}+\sqrt{y}}{2\left(\sqrt{x}-\sqrt{y}\right)}-\dfrac{\sqrt{x}-\sqrt{y}}{2\left(\sqrt{x}+\sqrt{y}\right)}-\dfrac{y+x}{y-x}\)
\(=\dfrac{x+2\sqrt{xy}+y-x+2\sqrt{xy}-y+2x+2y}{2\left(x-y\right)}\)
\(=\dfrac{2\left(x+2\sqrt{xy}+y\right)}{2\left(x-y\right)}=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
Lời giải:
Từ điều kiện đề bài suy ra: \(\left\{\begin{matrix} x+y=\sqrt{7}\\ xy=1\end{matrix}\right.\)
\(A=x^7+y^7=(x^3+y^3)(x^4+y^4)-(x^3y^4+x^4y^3)\)
Có:
\(x^3+y^3=(x+y)^3-3xy(x+y)=(\sqrt{7})^3-3\sqrt{7}=4\sqrt{7}\)
\(x^4+y^4=(x^2+y^2)^2-2x^2y^2=[(x+y)^2-2xy]^2-2(xy)^2=(7-2)^2-2.1^2=23\)
\(x^3y^4+x^4y^4=(xy)^3(x+y)=1^3.\sqrt{7}=\sqrt{7}\)
Do đó:
\(A=4\sqrt{7}.23-\sqrt{7}=92\sqrt{7}-\sqrt{7}=91\sqrt{7}\)