K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2020

Đặt \(A=\frac{x+y}{xyz}\)

Theo bài ra có ta có các số nguyên dương x,y,z có tổng =1

=> x+y+z=1

=> \(\left[\left(x+y\right)+z\right]^2=1\). Áp dụng BĐT \(\left(a+b\right)^2\ge4ab\)ta có:

\(1=\left[\left(x+y\right)+z\right]^2\ge4\left(x+y\right)z\)

Nhân 2 vế với số dương \(\frac{x+y}{xyz}\)được

\(\frac{x+y}{xyz}\ge\frac{4z\left(x+y\right)^2}{xyz}\ge\frac{4x\cdot4xy}{xyz}=16\)

MinA=16 <=> \(\hept{\begin{cases}x+y=1\\x=y\\x+y+z=1\end{cases}\Leftrightarrow x=y=\frac{1}{4};z=\frac{1}{2}}\)

Vậy MinA =16 đạt được khi \(x=y=\frac{1}{4};z=\frac{1}{2}\)

26 tháng 4 2020

là sao

13 tháng 10 2017

Ta có: \(1=x+y\ge2\sqrt{xy}\)

\(\Rightarrow4xy\le1\)

\(S=\frac{1}{x^2+y^2}+\frac{3}{4xy}\)

\(=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}\)

\(\ge\frac{4}{x^2+y^2+2xy}+\frac{1}{1}=\frac{4}{\left(x+y\right)^2}+1=\frac{4}{1}+1=5\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

13 tháng 10 2017

Áp dụng BĐT AM - MG ta có :

\(xy\)\(\le\)\(\frac{\left(x+y\right)^2}{4}\)\(=\)\(\frac{1}{4}\)

Áp dụng BĐT Cauchy - Schwarz dạng Engel :

\(S\)\(=\)\(\frac{1}{x^2+y^2}\)\(-\)\(\frac{3}{4xy}\)\(=\)\(\frac{1}{x^2+y^2}\)\(-\)\(\frac{2}{4xy}\)\(-\)\(\frac{1}{4xy}\)

\(=\)\(\frac{1}{x^2+y^2}\)\(-\)\(\frac{1}{2xy}\)\(-\)\(\frac{1}{4xy}\)\(\ge\)\(\frac{\left(1-1\right)^2}{x^2-y^2-2xy}\)\(-\)\(\frac{1}{4xy}\)

\(\ge\)\(\frac{\left(1+1\right)^2}{\left(x+y\right)^2}\)\(-\)\(\frac{1}{4.\frac{1}{4}}\)\(=\)\(4\)\(-\)\(1\)\(=\)\(5\)

Xảy ra khi  \(x\)\(=\)\(y\)\(=\)\(\frac{1}{2}\)

4 tháng 1 2018

Lần sau tìm nơi gõ công thức và gõ hẳn ra nhé e <3

Áp dụng BĐT Cauchy-Schwarz ta có:

\(P=x^4+y^4\ge\frac{\left(x^2+y^2\right)^2}{2}\ge\frac{\left(\frac{\left(x+y\right)^2}{2}\right)^2}{2}=\frac{\left(\frac{2^2}{2}\right)^2}{2}=...\text{(tự tính nhé :)}\)

Khi \(x=y=1\)

4 tháng 1 2018

I spring. Because spring has many beautiful  flowers.

\(P=x^2+y^2=\left(x+y\right)^2-2xy=\left(15-xy\right)^2-2xy=\left(xy\right)^2-32xy+225=p^2-32p+225.\)

s+p = 15 ; s2 -4p>/ 0 => p</ 3

P min = 138 khi  p = 3 ; s = 12 

6 tháng 9 2016

bạn gải thích rõ bước cuối được không bạn từ bước s+p=15;s2-4p>/0

22 tháng 3 2017

\(M=x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}+4\)

\(M=\left(1-2xy\right)+\dfrac{1-2xy}{\left(xy\right)^2}+4=\dfrac{1}{\left(xy\right)^2}-\dfrac{2}{xy}-2xy+5\\ \)đặt 1/xy= t \(\left(x+y\right)=1\Rightarrow xy\le\dfrac{1}{4}\Rightarrow t\ge4\)

\(M=t^2-2t-\dfrac{2}{t}+5\)

khi t > 1 hiển nhiên M luôn tăng khi t tăng => \(Mmin=M\left(4\right)=4.4-2.4-\dfrac{2}{4}+5=\dfrac{25}{2}\)

Đẳng thức khi t=4 => xy=1/4 => x=y=1/2

30 tháng 5 2018

\(M=\frac{xy}{x^2+y^2}+\frac{x^2+y^2}{xy}\)

\(=\frac{xy}{x^2+y^2}+\frac{x^2+y^2}{4xy}+\frac{3}{4}.\frac{x^2+y^2}{xy}\)

\(\ge2\sqrt{\frac{xy}{x^2+y^2}.\frac{x^2+y^2}{4xy}}+\frac{3}{4}.\frac{2xy}{xy}\)

\(\Rightarrow M\ge1+\frac{3}{2}=\frac{5}{2}\)

Dấu = xảy ra khi \(x=y>0\)

21 tháng 4 2022

\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}=\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)+\dfrac{1}{2xy}\)

Áp dụng BĐT Schwarz : \(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\ge\dfrac{\left(1+1\right)^2}{x^2+y^2+2xy}=\dfrac{4}{\left(x+y\right)^2}=4\)

Lại có \(\dfrac{1}{2xy}=\dfrac{2}{4xy}\ge\dfrac{2}{\left(x+y\right)^2}=2\)

Cộng vế với vế được P \(\ge6\) ("=" khi x = y = 1/2)

Vậy Min P = 6 <=> x = y = 1/2 

19 tháng 8 2019

Dự đoán x = 2/5; y =4/7, giúp ta có được lời giải:D

\(A=\frac{5x}{2}+\frac{2}{5x}+\frac{7y}{2}+\frac{8}{7y}+\frac{1}{2}\left(x+y\right)\)

Đến đây đánh giá cô si + kết hợp giả thiết là xong:D

NV
12 tháng 1 2021

\(A\ge\dfrac{\left(1+2\right)^2}{x+y}=9\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{1}{3};\dfrac{2}{3}\right)\)

12 tháng 1 2021

Tại sao  \(A\ge\dfrac{\left(1+2\right)^2}{x+y}=9\) vậy bạn?