\(\le\) \(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2018

a) \(4xy\le\left(x+y\right)^2=1\)

=> \(xy\le4\)

Dấu "=" xảy ra <=> x = y = 1/2

b) A = \(A=x^2+2+\dfrac{1}{x^2}+y^2+2+\dfrac{1}{y^2}=\left(x^2+y^2\right)+\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+4\ge2xy+\dfrac{2}{xy}+4=\left(32xy+\dfrac{2}{xy}\right)-30xy+4\ge8-\dfrac{30}{4}+4=\dfrac{9}{2}\)

Dấu "=" xảy ra <=> x = y = 1/2

6 tháng 5 2017

nếu qua hạn nộp cô chưa chữa cho bn mình sẽ giúp :) giờ quá bận :)

25 tháng 10 2017

a) Ta có:

\(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n}-\sqrt{n+1}}{n-n-1}=-\sqrt{n}+\sqrt{n+1}\)

\(\Rightarrow A=...=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-...-\sqrt{48}+\sqrt{49}=-1+7=6\)

12 tháng 5 2017

Dự đoán dấu = xảy ra khi x=y=\(\dfrac{z}{2}\)

ta có: \(VT=3+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{y^2}+\dfrac{x^2}{z^2}+\dfrac{z^2}{x^2}\)

\(=3+\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\right)+\left(\dfrac{y^2}{z^2}+\dfrac{x^2}{z^2}\right)+\left(\dfrac{z^2}{y^2}+\dfrac{z^2}{x^2}\right)\)

Áp dụng BĐT AM-GM: \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\ge2\)

Áp dụng BĐT bunyakovsky:\(\dfrac{y^2}{z^2}+\dfrac{x^2}{z^2}\ge\dfrac{1}{2}\left(\dfrac{y}{z}+\dfrac{x}{z}\right)^2=\dfrac{1}{2}.\dfrac{\left(x+y\right)^2}{z^2}\)

\(\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}\ge\dfrac{1}{2}\left(\dfrac{z}{x}+\dfrac{z}{y}\right)^2\ge\dfrac{1}{2}\left(\dfrac{4z}{x+y}\right)^2=\dfrac{8z^2}{\left(x+y\right)^2}\)(AM-GM)

do đó \(VT\ge5+\dfrac{1}{2}\dfrac{\left(x+y\right)^2}{z^2}+\dfrac{8z^2}{\left(x+y\right)^2}\)

Đặt \(\dfrac{z}{x+y}=a\)(a>0)thì \(a\ge1\)do \(z\ge x+y\)

\(VT\ge8a^2+\dfrac{1}{2a^2}+5=\dfrac{a^2}{2}+\dfrac{1}{2a^2}+\dfrac{15}{2}a^2+5\ge\dfrac{a^2}{2}+\dfrac{1}{2a^2}+\dfrac{25}{2}\)

Áp dụng BĐT AM-GM: \(\dfrac{a^2}{2}+\dfrac{1}{2a^2}\ge2\sqrt{\dfrac{a^2}{4a^2}}=1\)

do đó \(VT\ge1+\dfrac{25}{2}=\dfrac{27}{2}\)(đpcm)

Dấu = xảy ra khi a=1 hay \(x=y=\dfrac{z}{2}\)

Câu a dùng hằng đẳng thức mở rộng là được,tối rồi lười lắm,t giúp câu b

20 tháng 5 2018

giúp t câu b với

16 tháng 6 2018
https://i.imgur.com/Godbi3O.jpg
16 tháng 2 2019

a ) Áp dụng BĐT Cô-si với 2 số x ; y > 0 , ta có :

\(x^2+y^2+\dfrac{1}{xy}\ge\dfrac{\left(x+y\right)^2}{2}+\dfrac{1}{\dfrac{\left(x+y\right)^2}{4}}=\dfrac{2^2}{2}+\dfrac{1}{\dfrac{2^2}{4}}=2+1=3\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=1\)

Vậy ...

b ) Áp dụng BĐT Cô-si với 2 số x ; y > 0 , ta có :

\(x+y+\dfrac{1}{xy}\ge3\sqrt[3]{xy.\dfrac{1}{xy}}=3\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=\dfrac{1}{xy}\)

\(\Leftrightarrow x^2y=y^2x=1\)

\(\Leftrightarrow x^3y^3=1\Leftrightarrow xy=1\left(x;y>0\right)\)

\(\Leftrightarrow x=y=1\)

Vậy ...

15 tháng 4 2018

a)x2+y2=2 =>(x+y)2-2xy=2<=>-2xy=2-(x+y)2 <=> xy=\(-\dfrac{2-\left(x+y\right)2}{2}\)

\(-\dfrac{2-\left(x+y\right)2}{2}< 1\)

=>xy <1