K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2016

gọi số cây của 3 tổ là a;b;c

ta có:a+b+c=179 và a=6/11.b=7/10.c

=>\(a=\frac{6b}{11}=\frac{7c}{10}\Rightarrow\frac{a}{1}=\frac{b}{\frac{11}{6}}=\frac{c}{\frac{10}{7}}\)

Rồi áp dụng tính chất dãy tỉ số=nhau đã học

27 tháng 2 2016

137 cây bạn ơi

Bài 1:Tìm x:a) (x4)3 = \(\frac{x^{18}}{x^7}\)(x\(\ne\)0)b) x : \(\frac{3}{8}\)+\(\frac{5}{8}\)= xBài 2:Cho A = \(\frac{1}{2^2}\)+ \(\frac{1}{2^4}\)+ \(\frac{1}{2^6}\)+ ... +\(\frac{1}{2^{100}}\)CM: A < \(\frac{1}{3}\)Bài 3:Tìm số x, y, z theo a, b, c biết:ax = by = cz và xyz = 8 : (abc), (a, b, c \(\ne\)0)Bài 3:Cho x và y là hai đại lượng TLN với nhau. Khi x nhận giá trị x1 = 2, x2 = 5 thì các giá trị tương ứng y1, y2 thỏa mãn:2y1 + 7y2 = 48....
Đọc tiếp

Bài 1:

Tìm x:

a) (x4)3 = \(\frac{x^{18}}{x^7}\)(x\(\ne\)0)

b) x : \(\frac{3}{8}\)+\(\frac{5}{8}\)= x

Bài 2:

Cho A = \(\frac{1}{2^2}\)\(\frac{1}{2^4}\)\(\frac{1}{2^6}\)+ ... +\(\frac{1}{2^{100}}\)

CM: A < \(\frac{1}{3}\)

Bài 3:

Tìm số x, y, z theo a, b, c biết:

ax = by = cz và xyz = 8 : (abc), (a, b, c \(\ne\)0)

Bài 3:

Cho x và y là hai đại lượng TLN với nhau. Khi x nhận giá trị x1 = 2, x2 = 5 thì các giá trị tương ứng y1, y2 thỏa mãn:

2y1 + 7y2 = 48. Hãy biểu diễn y qua x.

Bài 4:

Tìm x để biểu thức sau đạt giá trị lớn nhất. Hãy tìm giá trị lớn nhất đó:

A = \(\frac{2016}{|x-2015|+2}\)

Bài 5:

A = 1-\(\frac{3}{4}\)+\(\left(\frac{3}{4}\right)^2\)-\(\left(\frac{3}{4}\right)^3\)+\(\left(\frac{3}{4}\right)^4\)- ... -\(\left(\frac{3}{4}\right)^{2009}\)+\(\left(\frac{3}{4}\right)^{2010}\)

Chứng tỏ A không phải là số nguyên.

Bài 5:

Một trường có 3 lớp 7. Biết rằng \(\frac{2}{3}\)số học sinh lớp 7A bằng \(\frac{3}{4}\)số học sinh lớp 7B bằng\(\frac{4}{5}\)số học sinh lớp 7C. Lớp 7C có số học sinh ít hơn tổng số học sinh của hai lớp kia là 57 bạn. Tính số học sinh mỗi lớp.

 

Gần thi rồi, các bạn ơi HELP mình với! Ai biết bài nào thì HELP gấp!!!!!

4
20 tháng 12 2016

Dài ngoằng nhìn phát ngán

a)\(\left(x^4\right)^{^3}=\frac{x^{18}}{x^7}\Leftrightarrow x^{12}=x^{18-7}\Leftrightarrow x^{12}=x^{11}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

20 tháng 12 2016

X=0=>loại

7 tháng 10 2015

tổ1: 42

tổ 2:77

tổ3: 60

18 tháng 8 2017

(1) Số cây tổ 1 trồng được so với số cây tổ 2 là 6/11 => số cây tổ 1 trồng được . 11/6 = số cây tổ2

(2) Số cây tổ 1 trồng được so với số cây tổ 3 là 7/10 => Số cây tổ 1 trồng được . 10/7 = số cây tổ 3

Từ (1) và (2) => Tổng số cây của 3 tổ ứng với : 1 + 11/6 + 10/7 = 179/42 ( số cây tổ 1 )

=> Số cây tổ 1 trồng được : 179 : 179/42 = 42 ( cây )

....

20 tháng 7 2018

Tổ 1 trồng 42 cây

Tổ 2 trồng 77 cây

Tổ 3 trồng 60 cây

                                      Đề luyện thi HSG số 5Bài 1 (3 điểm) Thực hiện phép tính:a) \(A = (0,3(4) + 1,(62) : 14\frac{7}{11} - \frac{\frac{1}{2} + \frac{1}{3}}{0,8(5)} : \frac{90}{11}) . \frac{315}{106} : \frac{1}{2007}\)b) \(A = (\frac{\frac{4}{15} + \frac{4}{35} + \frac{4}{63} +...+ \frac{4}{399}}{\frac{3}{8.11} + \frac{3}{11.14} +...+ \frac{3}{197.200}}) . \frac{201420142014}{201520152015}\)c) \(C = 1 + \frac{1}{2} . (1 + 2) + \frac{1}{3}...
Đọc tiếp

                                      Đề luyện thi HSG số 5

Bài 1 (3 điểm) Thực hiện phép tính:

a) \(A = (0,3(4) + 1,(62) : 14\frac{7}{11} - \frac{\frac{1}{2} + \frac{1}{3}}{0,8(5)} : \frac{90}{11}) . \frac{315}{106} : \frac{1}{2007}\)

b) \(A = (\frac{\frac{4}{15} + \frac{4}{35} + \frac{4}{63} +...+ \frac{4}{399}}{\frac{3}{8.11} + \frac{3}{11.14} +...+ \frac{3}{197.200}}) . \frac{201420142014}{201520152015}\)

c) \(C = 1 + \frac{1}{2} . (1 + 2) + \frac{1}{3} . (1 + 2 +3) +\frac{1}{4} . (1 + 2 + 3 + 4) + ...+ \frac{1}{2015} . (1 + 2 + 3 +...+2015)\)

Bài 2 (10 điểm) Tìm x, y, z biết:

a) \((1 - x) . (2x + 3) < 0\)

b) \((2x - 1)^4 = 16\)

c) \((2x + 1)^4 = (2x + 1)^6\)

d) \(\frac{x - 1}{-15} = \frac{-60}{x-1}\)

e) \(-4x . (x - 5) - 2x . (8 - 2x) = -3\)

f) \(3x = 27; 7y = 5z \) và \(x - 7 + z = 32\)

g) \(\frac{2x + 1}{5} = \frac{3y - 2}{7} = \frac{2x + 3y - 1}{6x}\)

h) \(\frac{x+6}{2002} + \frac{x + 5}{2003} + \frac{x + 4}{2004} = \frac{x + 3}{2005} + \frac{x + 2}{2006} + \frac{x + 1}{2007}\)

Bài 3 (1,5 điểm) Bốn lớp 7A, 7B, 7C, 7D đi lao động trồng cây. Biết rằng số cây trồng của bốn lớp 7A, 7B, 7C, 7D lần lượt tỉ lệ với 0,8; 0,9; 1; 1,1 và lớp 7B trồng nhiều hơn lớp 7A là 5 cây. Tính số cây mỗi lớp đã trồng.

Bài 4 (1,5 điểm)

a) Tìm các số a1, a2, a3,..., a100, biết \(\frac{a_{1} - 1}{100} = \frac{a_{2} - 2}{99} = \frac{a_{3} - 3}{98} =...= \frac{a_{100} - 100}{1}\) và \(a_{1} + a_{2} + a_{3} +...+ a_{100} = 10100\)

b) Biết rằng: \(1^4 + 2^4 + 3^4 +...+ 10^4 = 25333\). Tính \(S = 2^4 + 4^4 + 6^4 +...+ 20^4\)

Bài 5 (1,5 điểm) Cho 3 số x, y, z là 3 số khác 0 thỏa mãn điều kiện: \(\frac{y + z -x}{x} = \frac{z + x -y}{y} = \frac{x +y - z}{z}\). Hãy tính giá trị của biểu thức \(A = (1 + \frac{x}{y})(1 + \frac{y}{x})(1 + \frac{z}{x})\)

Bài 6 (3,0 điểm) Cho \(\Delta ABC\), gọi M và N theo thứ tự là trung điểm của AC và AB. Trên tia đối của tia MB lấy điểm D sao cho MD = MB, trên tia đối của tia NC lấy điểm E sao cho NE = NC. Chứng minh rằng:

a) Ba điểm E, A, D thẳng hàng

b) A là trung điểm của ED

 

4
29 tháng 12 2018

Bài easy quá mà!

4. a) Áp dụng tỉ dãy số bằng nhau:

\(\frac{a_1-1}{100}=\frac{a_2-2}{99}=...=\frac{a_{100}-100}{1}\)

\(=\frac{\left(a_1+a_2+...+a_{100}\right)-\left(1+2+...+100\right)}{100+99+...+2+1}=\frac{5050}{5050}=1\)

Suy ra: \(a_1-1=100\Leftrightarrow a_1=101\)

\(a_2-2=99\Leftrightarrow a_2=101\)

.......v.v...

\(a_{100}-100=1\Leftrightarrow a_{100}=101\)

Do đó: \(a_1=a_2=a_3=...=a_{100}=101\)

29 tháng 12 2018

Bài 5/

Theo t/c dãy tỉ số bằng nhau,ta có: \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)\(=\frac{2x}{x}\)

Suy ra:

 \(\frac{y+z-x}{x}=\frac{2x}{x}\Leftrightarrow y+z-x=2x\Rightarrow x=y=z\) (vì nếu \(x\ne y\ne z\Rightarrow y+z-x\ne2x\) "không thỏa mãn")

Thay vào A,ta có: \(A=\left(1+\frac{x}{x}\right)\left(1+\frac{y}{y}\right)\left(1+\frac{z}{z}\right)=2.2.2=8\)