![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu hỏi của Yến Trần - Toán lớp 8 - Học toán với OnlineMath
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Ta có:
\(P=x^3(z-y^2)+y^3(x-z^2)+z^3(y-x^2)+xyz(xyz-1)\)
\(=x^3(z-y^2)+xy^3+yz^3+x^2y^2z^2-y^3z^2-z^3x^2-xyz\)
\(=x^3(z-y^2)+(xy^3-xyz)+(yz^3-y^3z^2)+(x^2y^2z^2-z^3x^2)\)
\(=x^3(z-y^2)+xy(y^2-z)+yz^2(z-y^2)+x^2z^2(y^2-z)\)
\(=(y^2-z)(-x^3+xy-yz^2+x^2z^2)\)
\(=(y^2-z)[x^2(z^2-x)-y(z^2-x)]\)
\(=(y^2-z)(z^2-x)(x^2-y)=bca\)
Do đó $P$ có giá trị không phụ thuộc vào biến.
![](https://rs.olm.vn/images/avt/0.png?1311)
P = ...
\(\Leftrightarrow P=x^3z-x^3y^2+y^3x-y^3z^2+z^3y-z^3x^2+x^2y^2z^2-xyz\)\(\Leftrightarrow P=\left(x^3z-x^2z^3\right)-\left(x^3y^2-x^2y^2z^2\right)+\left(xy^3-y^3z\right)+\left(yz^3-xyz\right)\)\(\Leftrightarrow P=x^2z\left(x-z^2\right)-x^2y^2\left(x-z^2\right)+y^3\left(x-z^2\right)-yz\left(x-z^2\right)\)\(\Leftrightarrow P=\left(x-z^2\right)\left(x^2z-x^2y^2+y^3-yz\right)\)
\(\Leftrightarrow P=\left(x-z^2\right)\left[\left(x^2z-x^2y^2\right)+\left(y^3-yz\right)\right]\)
\(\Leftrightarrow P=\left(x-z^2\right)\left[-x^2\left(y^2-z\right)+y\left(y^2-z\right)\right]\)
\(\Leftrightarrow P=\left(x-z\right)^2\left(y^2-z\right)\left(y-x^2\right)\)
\(\Leftrightarrow P=abc\left(đpcm\right)\)
Sửa lại
P = ...
\(\Leftrightarrow P=...\)
\(\Leftrightarrow P=...-...+\left(xy^3-y^3z^2\right)+...\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi Ư CLN của tử và mẫu là d => 3n+1 chia hết cho d, 5n+2 chia hết cho d . Sau đó nhân 3n+1 với 5 và 5n+2 với 3, rồi lấy mẫu trừ tử
=> 15n+6-(15n+5) chia hết cho d => 1 chia hết cho d => d=1=> (3n+1;5n+2)=1(ĐFCM)
Bài 2:
x=y+1 =>x-y=1
Ta có :
(x-y)(x+y)(x2+y2)(x4+y4)= (x2-y2)(x2+y2)(x4+y4)
=(x4-y4)(x4+y4)=x8-y8 (ĐFCM)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^3\left(y-x^2\right)+xyz\left(xyz-1\right)\)
\(=x^3z-x^3y^2+y^3x-y^3z^2+z^3y-z^3x^2+y^2z^2x^2-xyz\)
\(=y^2z^2x^2-y^3z^2-z^3x^2+z^3y-x^3y^2+y^3x+x^3z-xyz\)
\(=y^2z^2\left(x^2-y\right)-z^3\left(x^2-y\right)-xy^2\left(x^2-y\right)+xz\left(x^2-y\right)\)
\(=\left(x^2-y\right)\left(y^2z^2-z^3-xy^2+xz\right)=\left(x^2-y\right)\left[y^2\left(z^2-x\right)-z\left(z^2-x\right)\right]\)
\(=\left(x^2-y\right)\left(z^2-x\right)\left(y^2-z\right)=a.b.c\)
Vậy P không phụ thuộc vào x,y,z
![](https://rs.olm.vn/images/avt/0.png?1311)
\(P=x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^3\left(y-x^2\right)+xyz\left(xyz-1\right)\)
\(P=\left(-x^3\left(y^2-z\right)\right)+xy^3-y^3z^2+yz^3-x^2z^3+x^2y^2z^2-xyz\)
\(P=\left(-x^3\left(y^2-z\right)\right)+\left(xy^3-xyz\right)-\left(y^3z^2-yz^3\right)+\left(x^2y^2z^2-x^2z^3\right)\)
\(P=\left(-x^3\left(y^2-z\right)\right)+\left(xy\left(y^2-z\right)\right)-\left(yz^2\left(y^2-z\right)\right)+\left(x^2z^2\left(y^2-z\right)\right)\)
\(P=\left(-x^3+xy-yz^2+x^2z^2\right)\left(y^2-z\right)\)
\(P=\left(\left(x^2z^2-x^3\right)-\left(yz^2-xy\right)\right)\left(y^2-z\right)\)
\(P=\left(x^2\left(z^2-x\right)-y\left(z^2-x\right)\right)\left(y^2-z\right)\)
\(P=\left(\left(x^2-y\right)\left(z^2-x\right)\right)\left(y^2-z\right)\)
\(P=\left(a.c\right).b\)
\(P=a.b.c\)
Vậy giá trị của P không phụ thuộc vào biến x;y;z (điều cần chứng minh)
A = 3.[(x + y)2 - 2xy) - 2. [( x+ y)3 - 3xy.(x+ y)] = 3. (1 - 2xy) - 2.(1 - 3xy) = 3 - 6xy - 2 + 6xy = 3- 2= 1