\(x^{200}+x^{100}+1\) chia hết cho  
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2016

Ta có: a3b−ab3=a3b−ab−ab3+ab=ab(a2−1)−ab(b2−1)

=b(a−1)a(a+1)−a(b−1)b(b+1)

Do tích của 3 số tự nhiên liên tiếp thì chia hết cho 6

=> b(a−1)a(a+1);a(b−1)b(b+1)6a3bab36a3b−ab36

 

27 tháng 11 2016

mk chưa đk hok đến dạng này , còn phần b chắc cx như phần a thôy , pjo mk có vc bận nên tối về mk sẽ lm típ nha

2 tháng 9 2018

 \(A=x^{200}+x^{100}+1\)

    \(=x^{200}-x^2+x^{100}-x^4+x^4+x^2+1\)

    \(=x^2\left(x^{198}-1\right)+x^4\left(x^{96}-1\right)+\left(x^4+x^2+1\right)\)

    \(=x^2\left(x^{^6}-1\right).A+x^4\left(x^6-1\right).B+x^4+x^2+1\)

\(x^6-1=\left(x^3-1\right)\left(x^3+1\right)=\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)\left(x^2-x+1\right)=\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)\)

Vậy \(A⋮\left(x^4+x^2+1\right)\)

9 tháng 8 2018

x^200+x^100+1=x^100*(x^2+1)+1
x^4+x^2+1=x^2*(x^2+1)+1
mà x^100chia hết cho x^2
x^2+1chia hết cho x^2+1
1 chia hết cho1
suy ra x^100*(x^2+1)+1 chia hết cho x^2*(x^2+1)+1 hay x^200+x^100+1 chia hết cho x^4+x^2+1

18 tháng 11 2016

bài này khó khinh lên đc mình bó tay

18 tháng 11 2016

Đề này b kiếm đâu thế

23 tháng 11 2016

Giả sử đa thức bậc 4 đó là 

f(x) = ax4 + b​x3 + c​x2 + dx + e

=> f(0) = e chia hết cho 7 => e chia hết cho 7

=> f(1) = a + b + c + d + e (1) chia hết cho 7

=> f(-1) = a - b + c - d + e(2) chia hết cho 7

=> f(2) = 16a + 8b + 4c + 2d + e (3) chia hết cho 7

=> f(-2) = 16a - 8b + 4c - 2d + e (4) chia hết cho 7

Lấy (1) + (2) được 2a + 2c + 2e chia hết cho 7 => a + c chia hết cho 7

Lấy (1) - (2) được 2b + 2d chia hết cho 7 => b + d chia hết cho 7

Làm tiếp rồi suy luận ra được ĐPCM

23 tháng 11 2016

2/ Ta có

2x2 - 6y2 = xy

<=> (2x2 - 4xy) + (- 6y2 + 3xy ) = 0

<=> (x - 2y)(2x + 3y) = 0

Thế giá trị x,y vô là tìm được đáp án nhé

5 tháng 9 2020

\(P\left(x\right)=x^{100}+x^2+1=x^{100}-x^{99}+x^{98}+x^{99}-x^{98^{ }}+x^{97}-x^{97}+x^{96}-x^{95}+...+x^2-x+1\)

\(=x^{98}\left(x^2-x+1\right)+x^{97}\left(x^2-x+1\right)-x^{95}\left(x^2-x+1\right)-...+\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^{98}+x^{97}-x^{95}-...+1\right)\)=> đpcm