Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
ĐK: \(x,y\ge-2\)
Ta có: \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+\frac{x-y}{\sqrt{x+2}+\sqrt{y+2}}=0\)
=> x-y=0=>x=y
Thay y=x vào B ta được: B=x2+2x+10\(=\left(x+1\right)^2+9\ge9\forall x\ge-2\)
Dấu '=' xảy ra <=> x+1=0=>x=-1 (tmđk)
Vậy Min B =9 khi x=y=-1
\(Q=x\sqrt{x}+y\sqrt{y}=\left(\sqrt{x}\right)^3+\left(\sqrt{y}\right)^3=\left(\sqrt{x}+\sqrt{y}\right)\left(x+y-\sqrt{xy}\right)\)
\(=x+y-\sqrt{xy}\)
Đặt \(a=\sqrt{x},b=\sqrt{y}\) (\(a,b\ge0\))
Ta đưa bài toán trở về dạng tìm max và min của biểu thức \(Q=a^2+b^2-ab\) biết \(a+b=1\)
\(Q=\left(a+b\right)^2-3ab\ge\left(a+b\right)^2-\frac{3.\left(a+b\right)^2}{4}=\frac{\left(a+b\right)^2}{4}=\frac{1}{4}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}a=b\\a,b\ge0\end{cases}}\Leftrightarrow x=y=\frac{1}{4}\)
Lại có \(\sqrt{x}+\sqrt{y}=1\Rightarrow\hept{\begin{cases}0\le x\le1\\0\le y\le1\end{cases}}\)
Khi đó ta có \(Q\le1\)
Đẳng thức xảy ra khi x = 0 , y = 1 hoặc x = 1 , y = 0
Vậy : minQ = 1/4 <=> x = y = 1/4
maxQ = 1 <=> (x,y) = (0;1) ; (1;0)
Ta có \(\sqrt{1+x^2}+\sqrt{2x}\le\sqrt{2}\left(x+1\right)\)
\(\sqrt{1+y^2}+\sqrt{2y}\le\sqrt{2}\left(y+1\right)\)
\(\sqrt{1+z^2}+\sqrt{2z}\le\sqrt{2}\left(z+1\right)\)
\(\Rightarrow\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+\sqrt{2x}+\sqrt{2y}+\sqrt{2z}\le\sqrt{2}\left(x+y+z+3\right)\le6\sqrt{2}\)
Ta lại có \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\sqrt{3\left(x+y+z\right)}\le3\)
Theo đề bài ta có
\(\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+3\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
\(\le6\sqrt{2}+\left(3-\sqrt{2}\right)\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\le3\sqrt{2}+9\)
Dấu = xảy ra khi x = y = z = 1
ĐKXĐ: x ; y > -6
Ta có :\(x-\sqrt{y+6}=\sqrt{x+6}-y\)
\(\Rightarrow x+y=\sqrt{x+6}+\sqrt{y+6}\)
\(\Leftrightarrow P=\sqrt{x+6}+\sqrt{y+6}\left(\text{ }Do\text{ }VP\ge0\text{ }nen\text{ }P\ge0,dau\text{ }\text{ }\text{ }\text{ }"="khi\text{ }x=y=-6\right)\)
\(\Rightarrow P^2=x+y+12+2\sqrt{\left(x+6\right)\left(y+6\right)}\le P+12+x+y+12\)
\(\Leftrightarrow P^2\le2P+24\)
\(\Leftrightarrow P^2-2P-24\le0\)
\(\Leftrightarrow-4\le P\le6\)
Nên Pmax = 6 khi... (Tự làm nhé)
Pmin = 0 khi x = y = -6
Kiểm tra lại đề. x + y = - 6 thì sẽ tồn tại ít nhất 1 số bé hơn bằng - 2 mà nó làm cho căn không có nghĩa
\(\Leftrightarrow x+y=\sqrt{x+10}+\sqrt{y+10}\le\sqrt{2\left(x+y+20\right)}\) (\(x+y>0\))
\(\Rightarrow\left(x+y\right)^2\le2\left(x+y+20\right)\)
\(\Rightarrow\left(x+y\right)^2-2\left(x+y\right)-40\le0\)
\(\Rightarrow\left(x+y+1+\sqrt{41}\right)\left(x+y-1-\sqrt{41}\right)\le0\)
\(\Rightarrow x+y-1-\sqrt{41}\le0\)
\(\Rightarrow x+y\le1+\sqrt{41}\)
Dấu "=" xảy ra khi \(x=y=\frac{1+\sqrt{41}}{2}\)