Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= \(3\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)
= \(3\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)
= \(3\left(1-\frac{1}{100}\right)\)
= \(3\left(\frac{100}{100}-\frac{1}{100}\right)\)
= \(3.\frac{99}{100}\)
= \(\frac{297}{100}\)
\(A=3\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=3\left(1-\frac{1}{100}\right)=3.\frac{99}{100}=\frac{297}{100}\)
\(\frac{3x}{4.7}+\frac{3x}{7.10}+\frac{3x}{10.13}+\frac{3x}{13.16}+...+\frac{3x}{19.22}=\frac{-5}{88}\)
\(\left(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}+...+\frac{3}{19.22}\right)x=\frac{-5}{88}\)
\(\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+...+\frac{1}{19}-\frac{1}{22}\right)x=\frac{-5}{88}\)
\(\left[\frac{1}{4}+\left(\frac{1}{7}-\frac{1}{7}\right)+\left(\frac{1}{10}-\frac{1}{10}\right)+...+\left(\frac{1}{19}-\frac{1}{19}\right)-\frac{1}{22}\right]x=\frac{-5}{88}\)
\(\left[\frac{1}{4}-\frac{1}{22}\right]x=\frac{-5}{88}\)
\(\frac{9}{44}x=\frac{-5}{88}\)
\(x=\frac{-5}{88}:\frac{9}{44}\)
\(x=\frac{-5}{18}\)
~ Hok tốt ~
#)Giải :
Đặt \(A=\frac{3x}{2.7}+\frac{3x}{7.10}+\frac{3x}{10.13}+\frac{3x}{13.16}+...+\frac{3x}{19.22}=-\frac{5}{88}\)
\(A=\frac{3x}{2}+\frac{3x}{7}-\frac{3x}{7}+\frac{3x}{10}-\frac{3x}{10}+\frac{3x}{13}-\frac{3x}{13}+\frac{3x}{16}-...-\frac{3x}{19}+\frac{3x}{22}=-\frac{5}{88}\)
\(A=\frac{3x}{2}+0+0+0+...+0+\frac{3x}{22}=-\frac{5}{88}\)
\(A=\frac{3x}{2}+\frac{3x}{22}=-\frac{5}{88}\)
\(3x:\left(2+22\right)=-\frac{5}{88}\)
\(3x:24=-\frac{5}{88}\)
\(3x=-\frac{5}{88}.24\)
\(3x=-\frac{7}{11}\)
\(x=-\frac{7}{11}:3\)
\(x=-\frac{7}{33}\)
#~Will~be~Pens~#
a) (\(6\frac{2}{7}.x+\frac{3}{7}\))=-1.\(\frac{11}{5}+\frac{3}{7}\)
(\(6\frac{2}{7}.x+\frac{3}{7}\))=\(\frac{-62}{35}\)
\(\frac{44}{7}.x\)=\(\frac{-62}{35}-\frac{3}{7}\)
\(\frac{44}{7}.x=\frac{-77}{35}\)
x=\(\frac{-77}{35}:\frac{44}{7}\)=\(\frac{539}{1540}\)
a: \(\Leftrightarrow-\dfrac{9}{46}+\dfrac{108}{46}-\dfrac{93}{23}:\left(\dfrac{13}{4}-\dfrac{5}{3}x\right)=1\)
\(\Leftrightarrow\dfrac{93}{23}:\left(\dfrac{13}{4}-\dfrac{5}{3}x\right)=\dfrac{53}{46}\)
\(\Leftrightarrow-\dfrac{5}{3}x+\dfrac{13}{4}=\dfrac{186}{53}\)
=>-5/3x=55/212
hay x=-33/212
c: \(\Leftrightarrow\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{x\left(x+3\right)}=\dfrac{18}{19}\)
\(\Leftrightarrow1-\dfrac{1}{x+3}=\dfrac{18}{19}\)
=>x+3=19
hay x=16
a) \(2\frac{3}{13}-\frac{5}{9}-\left(\frac{3}{13}+\frac{4}{9}\right)\)
= \(\frac{29}{13}-\frac{5}{9}-\left(\frac{3}{13}+\frac{4}{9}\right)\)
= \(\left(\frac{29}{13}-\frac{3}{13}\right)-\left(\frac{5}{9}+\frac{4}{9}\right)\)
= \(2-1\)
= \(1\)
b) \(17\frac{4}{16}+\frac{3}{4}-\left(2\frac{3}{12}+75\%\right)\)
= \(\frac{69}{4}+\frac{3}{4}-\left(\frac{27}{12}+\frac{3}{4}\right)\)
= \(\left(\frac{69}{4}+\frac{3}{4}\right)-\left(\frac{27}{12}+\frac{3}{4}\right)\)
= \(18-3\)
= \(15\)
c) \(\frac{6}{5.7}+\frac{6}{7.9}+\frac{6}{9.11}+....+\frac{6}{101.103}+\frac{6}{103.106}\)
= \(3.\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+....+\frac{2}{101.103}+\frac{2}{103.106}\right)\)
= \(3.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{101}-\frac{1}{103}+\frac{1}{103}-\frac{1}{106}\right)\)
= \(3.\left(\frac{1}{5}-\frac{1}{106}\right)\)
= \(3.\frac{101}{530}\)
= \(\frac{303}{530}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}=\frac{49}{50}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=\frac{1}{1}-\frac{1}{50}\)
\(A=\frac{50}{50}-\frac{1}{50}=\frac{49}{50}\)
bài 2 tính trong ngoặc tương tự bài trên rồi tìm x
bài 3
vì giá trị nguyên của x để B là 1 số nguyên
\(\Rightarrow x+4⋮x+3\)
lập bảng
\(A=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+......+\frac{3}{197.200}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{197}-\frac{1}{200}\)
\(=1-\frac{1}{200}\)
\(=\frac{199}{200}\)
\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{197}-\frac{1}{200}\)
\(A=1-\frac{1}{200}\)
\(A=\frac{199}{200}\)
=\(\frac{1}{3}\left(\frac{1}{4}-\frac{1}{7}\right)+\frac{1}{3}\left(\frac{1}{7}-\frac{1}{10}\right)+..........+\frac{1}{3}\left(\frac{1}{97}-\frac{1}{100}\right)\)
=\(\frac{1}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+........+\frac{1}{97}-\frac{1}{100}\right)\)
=\(\frac{1}{3}\left(\frac{1}{4}-\frac{1}{100}\right)\)
=\(\frac{1}{3}x\frac{6}{25}\)=\(\frac{2}{25}\)
vậy biểu thức trên có giá trị bằng\(\frac{2}{25}\)
\(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{37.40}\)
\(=\frac{7-4}{4.7}+\frac{10-7}{7.10}+\frac{13-10}{10.13}+...+\frac{40-37}{37.40}\)
\(=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{37}-\frac{1}{40}\)
\(=\frac{1}{4}-\frac{1}{40}=\frac{9}{40}\)
\(x+\frac{9}{40}=\frac{-37}{40}\)
\(\Leftrightarrow x=-\frac{23}{20}\)