K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2020

làm nốt câu này rồi đi ngủ 

\(Q=\frac{|x-2020|+|x-2019|+2019+1}{|x-2019|+|x-2020|+2019}=1+\frac{1}{|x-2020|+|x-2019|+2019}\)

Để Q đạt GTLN thì \(|x-2020|+|x-2019|+2019\)đạt GTNN 

Ta có : \(|x-2020|+|x-2019|+2019=|x-2020|+|2019-x|+2019\)

Sử dụng BĐT /a/ + /b/ >= /a+b/ ta được : 

\(|x-2020|+|2019-x|+2019\ge|x-2020+2019-x|+2019=2020\)

Dấu = xảy ra khi và chỉ khi \(\left(x-2020\right)\left(2019-x\right)\ge0\Leftrightarrow2020\ge x\ge2019\)

Khi đó : \(Q=1+\frac{1}{|x-2020|+|x-2019|+2019}\le1+\frac{1}{2020}=\frac{2021}{2020}\)

Dấu = xảy ra khi và chỉ khi \(2019\le x\le2020\)

13 tháng 12 2019

Ta có: A = |x - 2019| + |x - 2020|

=> A = |x - 2019| + |2020 - x| \(\ge\)|x - 2019 + 2020 - x| = |1| = 1

Dấu "=" xảy ra <=> \(\left(x-2019\right)\left(2020-x\right)\ge0\)

<=> \(2019\le x\le2020\)

Vậy MinA = 1 <=> 2019 \(\le\)\(\le\)2020

12 tháng 2 2020

Mình giống bạn Edogawa Conan nhé

nhé !

Mình mới đăng kí !

25 tháng 3 2020

a) Sửa: C=(x+2)2+\(\left(y-\frac{1}{5}\right)^2\)+10

Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(y-\frac{1}{5}\right)^2\ge0\forall y\end{cases}}\)

\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2+10\ge10\forall x;y\)

hay C \(\ge10\). Dấu "=" \(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{5}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}}\)

27 tháng 3 2020
Cam on ban
20 tháng 8 2019

\(A=\frac{27-2x}{12-x}=\frac{2\left(12-x\right)+3}{12-x}=2+\frac{3}{12-x}\)

Để A lớn nhất thì  \(\frac{3}{12-x}\) lớn nhất

\(\Leftrightarrow12-x\) nhỏ nhất

Với \(x>12\Rightarrow12-x< 0\Rightarrow A\) là số âm

Với \(x< 12\Rightarrow12-x>0\Rightarrow A_{max}=5\Leftrightarrow x=11\)

A = \(\frac{27-2X}{12-X}\)\(\frac{24-2X+3}{12-X}\)\(\frac{\left(12-X\right)\cdot2+3}{12-X}\)=  2 + \(\frac{3}{12-X}\)

Lúc này biểu thức A lớn nhất khi \(\frac{3}{12-x}\) đạt GTLN

Hay 12-x là số tự nhiên nguyên nguyên dương nhỏ nhất là 1 hay x = 11

Lúc này bt A có giá trị là 2+ \(\frac{3}{1}\)\(2+3=5\)

Vậy bt A đạt GTLN là 5 khi x = 11

25 tháng 10 2020

Ta có: \(|x-2019|\ge0\forall x\in Q\)

          \(|y-2020|\ge0\forall y\in Q\)

\(\Rightarrow|x-2019|+|y-2020|+7\ge7\forall x,y\in Q\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2019=0\Rightarrow x=2019\\y-2020=0\Rightarrow x=2020\end{cases}}\)

          Vậy GTNN của S là 7 khi x = 2019; y = 2020

19 tháng 10 2018

\(B=\frac{32-2x}{11-x}=\frac{11-x+21-x}{11-x}=1+\frac{21-x}{11-x}=1+\frac{11-x+10}{11-x}=2+\frac{10}{11-x}\)

để B lớn nhất thì \(\frac{10}{11-x}\)lớn nhất

\(\Rightarrow11-x\)nhỏ nhất(khác 0)

\(\Rightarrow x=10\)

\(\Rightarrow B=12\)tại \(x=10\)

22 tháng 2 2019

Giả theo cách lớp 7 nha:

Đặt \(\hept{\begin{cases}\sqrt{6-x}=a\\\sqrt{x+2}=b\end{cases}}\)

\(\Rightarrow a^2+b^2=8\)

Ta có:

\(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow2ab\le a^2+b^2\)

\(\Leftrightarrow a^2+b^2+2ab\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow\left(a+b\right)^2\le2\left(a^2+b^2\right)=2\cdot8=16\)

\(\Leftrightarrow a+b\le4\)

Dấu = xảy ra khi \(a=b=2\)

\(\Leftrightarrow x=2\)

30 tháng 8 2020

\(ĐKXĐ:-2\le x\le6\)

Áp dụng BĐT \(\sqrt{a}+\sqrt{b}\le\sqrt{2.\left(a+b\right)}\) với \(a,b\ge0\) ta có :

\(y=\sqrt{6-x}+\sqrt{x+2}\le\sqrt{2.\left(6-x+x+2\right)}=\sqrt{2.8}=4\)

Dấu "=" xảy ra \(\Leftrightarrow6-x=x+2\Leftrightarrow x=2\)

Vậy \(y_{min}=4\) khi \(x=2\)

30 tháng 11 2018

a)  x=2 :y thuộc {9: -9 }

b) đặt k nha bạn kq = 4/ 5

k nha

30 tháng 11 2018

1, \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)

Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall x\end{cases}\Rightarrow VT\ge0\forall x}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}}\)
Vậy ...................