K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
21 tháng 12 2018

Lời giải:

Ta có:

\(A=x^4+6x^3+7x^2-6x+1=(x^4+6x^3+9x^2)-2x^2-6x+1\)

\(=(x^2+3x)^2-2(x^2+3x)+1\)

\(=(x^2+3x-1)^2\) là số chính phương với mọi $x$ nguyên

Vậy $A$ là số chính phương.

27 tháng 8 2017

 f(x) = x4 + 6x3 +11x+ 6x 

\(=x^4+x^3+5x^3+5x^2+6x^2+6x\)

\(=\left(x^4+x^3\right)+\left(5x^3+5x^2\right)+\left(6x^2+6x\right)\)

\(=x^3\left(x+1\right)+5x^2\left(x+1\right)+6x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^3+5x^2+6x\right)\)

\(=x\left(x+1\right)\left(x^2+5x+6\right)\)

\(=x\left(x+1\right)\left[x^2+2x+3x+6\right]\)

\(=x\left(x+1\right)\left[\left(x^2+2x\right)+\left(3x+6\right)\right]\)

\(=x\left(x+1\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)

\(=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

27 tháng 8 2017

b)Ta có

\(f\left(x\right)+1=x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)

\(=\left[x\left(x+3\right)\right].\left[\left(x+1\right)\left(x+2\right)\right]+1\)

\(=\left(x^2+3x\right).\left(x^2 +3x+2\right)+1\)

\(=\left(x^2+3x+1-1\right).\left(x^2+3x+1+1\right)+1\)

\(=\left[\left(x^2+3x+1\right)-1\right].\left[\left(x^2+3x+1\right)+1\right]+1\)

\(=\left(x^2+3x+1\right)^2-1+1=\left(x^2+3x+1\right)^2\)

Vậy với mọi x nguyên thì f(x) + 1 luôn có giá trị là 1 số chính phương 

DD
19 tháng 7 2021

a) \(2xy-y^2-6x+4y=7\)

\(\Leftrightarrow2xy-6x-y^2+3y+y-3=4\)

\(\Leftrightarrow\left(2x-y+1\right)\left(y-3\right)=4\)

Tới đây bạn xét bảng giá trị thu được nghiệm \(\left(x,y\right)\).

b) \(x^2+y^2-x⋮xy\Rightarrow x^2+y^2-x⋮x\Rightarrow y^2⋮x\).

Đặt \(y^2=kx,\left(k\inℤ\right),d=\left(x,k\right)\).

\(x^2+\left(kx\right)^2-x⋮xy\Rightarrow x+k^2x-1⋮y\).

suy ra \(x+k^2x-1⋮d\Rightarrow1⋮d\Rightarrow d=1\).

Do đó \(kx=y^2\)mà \(\left(k,x\right)=1\)nên \(x\)là số chính phương. 

30 tháng 5 2015

A=(x+y)(x+2y)(x+3y)(x+4y)+y4

A=(x+y)(x+4y).(x+2y)(x+3y)+y4

A=(x2+5xy+4y2)(x2+5xy+6y2)+y4

A=(x2+5xy+ 5y2 - y2 )(x2+5xy+5y2+y2)+y4

A=(x2+5xy+5y2)2-y4+y4

A=(x2+5xy+5y2)2

Do x,y,Z nen x2+5xy+5y2 Z

​A là số chính phương 

30 tháng 5 2015

a) Ta có: A= (x+y)(x+2y)(x+3y)(x+4y)+y4

                = (x2 + 5xy + 4y2)( x2 + 5xy + 6y2) + y2 
Đặt x2 + 5xy + 5y2 = h ( h thuộc Z):
A = ( h - y2)( h + y2) + y2 = h2 – y2 + y2 = h2 = (x2 + 5xy + 5y2)2
Vì x, y, z thuộc Z nên xthuộc Z, 5xy thuộc Z, 5y2 thuộc Z . Suy ra x2 + 5xy + 5ythuộc  Z
Vậy A là số chính phương.

 

29 tháng 4 2017

2,a A+4=4+(5x^2+6x+1)/x^2=(9x^2+6x+1)/x^2=(3x+1)^2/x^2 >/ 0 với mọi x

=>A >/ -4 =>minA=-4 , đẳng thức xảy ra khi x=-1/3 

2,b dễ c/m bđt : x^3+y^3 >/ (x+y)^3/4,khai triển hết ra còn 3(x-y)^2 >/ 0 ,đẳng thức xảy ra khi x=y

x^6+y^6=(x^2)^3+(y^2)^3 >/ (x^2+y^2)^3/4=1/4 ,đẳng thức xảy ra khi x=y=1/căn(2)

29 tháng 4 2017

2,c (a^3-3ab^2)^2=a^6-6a^4b^2+9a^2b^4=5^2=25

    (b^3-3a^2b)^2=b^6-6a^2b^4+9a^4b^2=10^2=100

Cộng theo vế đc a^6+b^6+3a^2b^4+3a^4b^2=(a^2+b^2)^3=25+100=125 =>S=a^2+b^2=5