\(\frac{x+1}{x+4}\ge0.\)Khẳng định nào dưới đây là...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2019

hoặc \(\hept{\begin{cases}x-2019< 0\\2020-x< 0\end{cases}}\)sai rồi (dòng thứ 6,7)

5 tháng 6 2019

đúng mọe rồi

a: \(\Leftrightarrow-\dfrac{2}{3}\cdot\dfrac{4-6-9}{12}\ge x\ge-\dfrac{13}{3}\cdot\dfrac{3-1}{6}\)

\(\Leftrightarrow-\dfrac{2}{3}\cdot\dfrac{-11}{12}\ge x\ge\dfrac{-13}{3}\cdot\dfrac{1}{3}\)

\(\Leftrightarrow\dfrac{22}{36}\ge x\ge\dfrac{-13}{9}\)

mà x là số nguyên

nên \(x\in\left\{0;-1\right\}\)

b: \(\Leftrightarrow\dfrac{21}{100}+\dfrac{75}{100}-\dfrac{220}{100}>=2x-1>=-3-\dfrac{1}{2}+3+\dfrac{1}{5}\)

\(\Leftrightarrow\dfrac{-124}{100}\ge2x-1\ge\dfrac{-3}{10}\)

\(\Leftrightarrow-\dfrac{124}{100}+1\ge2x>=\dfrac{-3}{10}+1\)

\(\Leftrightarrow\dfrac{-3}{25}\ge2x\ge\dfrac{7}{10}\)(vô lý)

=>x không có giá trị

c: \(\Leftrightarrow43+\dfrac{1}{2}-39-\dfrac{1}{5}\le-3x+4\le9+\dfrac{1}{5}+50+\dfrac{1}{7}\)

\(\Leftrightarrow3+\dfrac{3}{10}\le-3x+4\le59+\dfrac{12}{35}\)

\(\Leftrightarrow\dfrac{33}{10}-4\le-3x\le59+\dfrac{12}{35}-4\)

\(\Leftrightarrow\dfrac{-7}{10}\le-3x\le\dfrac{1937}{35}\)

\(\Leftrightarrow\dfrac{7}{30}\ge x\ge-\dfrac{1937}{105}\)

mà x là số nguyên

nên \(x\in\left\{0;-1;-2;...;-18\right\}\)

 

28 tháng 8 2017

mấy cái này đơn dãng vô cùng nhưng có đều bn ra đề dài quá nha

a) \(3x+4\ge7\Leftrightarrow3x\ge7-4\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\) vậy \(x\ge1\)

b) \(-5x+1< 11\Leftrightarrow-5x< 11-1\Leftrightarrow-5x< 10\Leftrightarrow x>\dfrac{10}{-5}\)

\(\Leftrightarrow x>-2\) vậy \(x>-2\)

c) \(\dfrac{5}{x-3}< 0\Leftrightarrow x-3< 0\Leftrightarrow x< 3\) vậy \(x< 3\)

d) \(\dfrac{-7}{2-x}\ge0\Leftrightarrow2-x\le0\Leftrightarrow x\ge2\) vậy \(x\ge2\)

e) \(x^2+4x>0\Leftrightarrow x\left(x+4\right)>0\) \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>0\\x+4>0\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x+4< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>0\\x>-4\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x< -4\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< -4\end{matrix}\right.\) vậy \(x>0\) hoặc \(x< -4\)

f) \(\dfrac{x-2}{x-6}< 0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-2>0\\x-6>0\end{matrix}\right.\\\left[{}\begin{matrix}x-2< 0\\x-6< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>2\\x>6\end{matrix}\right.\\\left[{}\begin{matrix}x< 2\\x< 6\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>6\\x< 2\end{matrix}\right.\)

vậy \(x>6\) hoặc \(x< 2\)

g) \(\left(x-1\right)\left(x+2\right)\left(3-x\right)< 0\Leftrightarrow-\left[\left(x-1\right)\left(x+2\right)\left(x-3\right)\right]< 0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x-3\right)>0\)

th1: 3 số hạng đều dương : \(\Leftrightarrow\left[{}\begin{matrix}x-1>0\\x+2>0\\x-3>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>1\\x>-2\\x>3\end{matrix}\right.\) \(\Rightarrow x>3\)

th2: 2 âm 1 dương : (vì trong 3 số hạng ta có : \(\left(x+2\right)\) lớn nhất \(\Rightarrow\left(x+2\right)\) dương)

\(\Leftrightarrow\left[{}\begin{matrix}x-1< 0\\x+2>0\\x-3< 0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x< 1\\x>-2\\x< 3\end{matrix}\right.\) \(\Rightarrow-2< x< 1\)

vậy \(x>3\) hoặc \(-2< x< 1\)

h) \(\dfrac{x^2-1}{x}>0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x^2-1>0\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}x^2-1< 0\\x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x^2>1\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}x^2< 1\\x< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}-1< x< 1\\x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>1\\-1< x< 0\end{matrix}\right.\) vậy \(x>1\) hoặc \(-1< x< 0\)

i) \(x^2+x-2< 0\Leftrightarrow x^2+x+\dfrac{1}{4}-\dfrac{9}{4}< 0\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2-\dfrac{9}{4}< 0\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2< \dfrac{9}{4}\Leftrightarrow\dfrac{-3}{2}< \left(x+\dfrac{1}{2}\right)< \dfrac{3}{2}\Leftrightarrow-2< x< 1\)

vậy \(-2< x< 1\)

27 tháng 8 2017

Mysterious Person, Đoàn Đức Hiếu, Nguyễn Đình Dũng , ... giúp mình!

18 tháng 7 2016

- 4/1/3 ( 1/2 - 1/6 ) =< x >= -2/3 ( 1/3 - 1/2 - 3/4 )

=> (-13/3) . 1/3 =< x >= (-2/3) . (-11/12)

=> (-13/9) =< x >= 11/18

=> x = -13/9, -13/8,..., 11/5, 11/6, 11/7, 11/8

23 tháng 7 2017

Cm/a+d>c;y/a

=ad>c;y/a

<=>c;y+d=c;y>d

23 tháng 7 2017

Bạn có thể viết rõ ràng hơn ko

a: \(\left(2x+3\right)\left(3x-5\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-5\ge0\\2x+3\le0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>=\dfrac{5}{3}\\x< =-\dfrac{3}{2}\end{matrix}\right.\)

b: \(\dfrac{x}{3-x}>-1\)

\(\Leftrightarrow\dfrac{x}{3-x}+1>0\)

\(\Leftrightarrow\dfrac{x+3-x}{3-x}>0\)

=>3-x>0

hay x<3

c: \(\dfrac{x-1}{x+5}\ge\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{x-1}{x+5}-\dfrac{3}{2}\ge0\)

\(\Leftrightarrow\dfrac{2x-2-3x-15}{2\left(x+5\right)}>=0\)

\(\Leftrightarrow\dfrac{x+17}{2\left(x+5\right)}< =0\)

=>-17<=x<-5

d: \(\dfrac{7}{4x^2-1}\ge0\)

=>4x2-1>0

=>(2x-1)(2x+1)>0

=>x>1/2 hoặc x<-1/2

 

26 tháng 1 2017

Bài 2:

Giải:

Đặt \(\frac{x}{5}=\frac{y}{4}=k\Rightarrow x=5k,y=4k\)

Ta có: \(x^2-y^2=1\)

\(\Rightarrow\left(5k\right)^2-\left(4k\right)^2=1\)

\(\Rightarrow5^2.k^2-4^2.k^2=1\)

\(\Rightarrow k^2\left(5^2-4^2\right)=1\)

\(\Rightarrow k^2.9=1\)

\(\Rightarrow k^2=\frac{1}{9}\)

\(\Rightarrow k=\pm\frac{1}{3}\)

+) \(k=\frac{1}{3}\Rightarrow x=\frac{5}{3};y=\frac{4}{3}\)

+) \(k=\frac{-1}{3}\Rightarrow x=\frac{-5}{3};y=\frac{-4}{3}\)

Vậy cặp số \(\left(x;y\right)\)\(\left(\frac{5}{3};\frac{4}{3}\right);\left(\frac{-5}{3};\frac{-4}{3}\right)\)

Bài 3:

Giải:

Ta có: \(2a=3b\Rightarrow\frac{a}{3}=\frac{b}{2}\Rightarrow\frac{a}{21}=\frac{b}{14}\)

\(5b=7c\Rightarrow\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{b}{21}=\frac{c}{15}\)

\(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{15}\)

...

Bài 4:

Giải:

Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)

\(\Rightarrow a=2k,b=3k,c=5k\)

Ta có: \(P=\frac{b+c-a}{a-b+c}=\frac{3k+5k-2k}{2k-3k+5k}=\frac{\left(3+5-2\right)k}{\left(2-3+5\right)k}=\frac{6}{4}=\frac{3}{2}\)

Vậy \(P=\frac{3}{2}\)

26 tháng 1 2017

4) đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\)

=> a = 2k

b = 3k

c = 4k

thay vào P ta có:

P = \(\frac{3k+4k-2k}{2k-3k+4k}=\frac{7k-2k}{4k-k}=\frac{5k}{3k}=\frac{5}{3}\)

vậy P = \(\frac{5}{3}\)