K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2017

A= \(\left(\sin^2a\right)^3+\left(cos^2a\right)^3+3sin^2acos^2a\)

=\(\left(sin^2a+cos^2a\right)\left(sin^4a-cos^2asin^2a+cos^4a\right)+3sin^2acos^2a\)

\(sin^4a+2sin^2acos^2a+cos^4a=\left(sin^2+cos^2\right)^2=1^2=1\)

24 tháng 9 2019

( tan2a+cot a)2 _  ( tan a - cot a )2

7 tháng 9 2016

\(A=sin^6\alpha+cos^6\alpha+3sin^2\alpha-cos^2\alpha\)

\(=\left(sin^2\alpha\right)^3+\left(cos^2\alpha\right)^3+3sin^2\alpha-cos^2\alpha\)

\(=\left(sin^2\alpha+cos^2\alpha\right)\left(sin^4\alpha+cos^4\alpha-sin^2\alpha.cos^2\alpha\right)+3sin^2\alpha-cos^2\alpha\)

\(=sin^4\alpha+cos^4\alpha-sin^2\alpha.cos^2\alpha+3sin^2\alpha-cos^2\alpha\)

\(=\left(sin^2\alpha+cos^2\alpha\right)^2-2sin^2\alpha.cos^2\alpha-sin^2\alpha.cos^2\alpha+3sin^2\alpha-cos^2\alpha\)

\(1-3sin^2\alpha.cos^2\alpha+3sin^2\alpha-cos^2\alpha=3sin^2\alpha\left(1-cos^2\alpha\right)+\left(1-cos^2\alpha\right)\)

\(=\left(3sin^2\alpha+1\right).sin^2\alpha=0\)

Ta có: \(A=\sin^6x+3\cdot\sin^4x\cdot\cos^2x+3\cdot\sin^2x\cdot\cos^4x+\cos^6x\)

\(=\left(\sin^2x+\cos^2x\right)^3\)

=1

21 tháng 10 2015

\(sin^6x+cos^6x+3sin^2x.cos^2x=\left(sin^2x\right)^3+\left(cos^2x\right)^3+3sin^2x.cos^2x\)

\(=\left(sin^2x+cos^2x\right)\left[\left(sin^2x\right)^2-sin^2x.cos^2x+\left(cos^2x\right)^2\right]+3sin^2x.cos^2x\)

\(=1.\left[\left(sin^2\right)^2-sin^2x.cos^2x+\left(cos^2x\right)^2\right]+3sin^2x.cos^2x\)

\(=\left(sin^2x\right)^2-sin^2x.cos^2x+\left(cos^2x\right)^2+3sin^2x.cos^2x\)

\(=\left(sin^2x+cos^2x\right)^2=1^2=1\)

1 tháng 3 2016

A= sin6x+cos6x+3sin2x.cos2x(sin2x +cos2x) =(sin2x +cos2x)3 = 1

a: \(VT=\left(\sin^2x+\cos^2x\right)\left(\sin^4x-\sin^2x\cdot\cos^2x+\cos^4x\right)\)

\(=\sin^4x-sin^2x\cdot cos^2x+cos^4x\)

\(=\left(sin^2x+cos^2x\right)^2-2sin^2x\cdot cos^2x-sin^2x\cdot cos^2x\)

\(=1-3\cdot sin^2x\cdot cos^2x\)

b: Đề sai rồi bạn. Nếu như đề thì nó ra là \(0=2\cdot\sin^2a\) thì cái này không đúng với mọi a nha bạn