Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ý 3 bạn bỏ dòng áp dụng....ta có nhé
\(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)
\(\Leftrightarrow\left(\frac{a^2}{4}-2.\frac{a}{2}b+b^2\right)+\left(\frac{a^2}{4}-2.\frac{a}{2}c+c^2\right)+\)\(\left(\frac{a^2}{4}-2.\frac{a}{d}d+d^2\right)+\frac{a^2}{4}\ge0\forall a;b;c;d\)
\(\Leftrightarrow\left(\frac{a}{2}-b\right)+\left(\frac{a}{2}-c\right)+\)\(\left(\frac{a}{2}-d\right)^2+\frac{a^2}{4}\ge0\forall a;b;c;d\)( luôn đúng )
Dấu " = " xảy ra <=> a=b=c=d=0
6) Sai đề
Sửa thành:\(x^2-4x+5>0\)
\(\Leftrightarrow\left(x-2\right)^2+1>0\)
7) Áp dụng BĐT AM-GM ta có:
\(a+b\ge2.\sqrt{ab}\)
Dấu " = " xảy ra <=> a=b
\(\Leftrightarrow\frac{ab}{a+b}\le\frac{ab}{2.\sqrt{ab}}=\frac{\sqrt{ab}}{2}\)
Chứng minh tương tự ta có:
\(\frac{cb}{c+b}\le\frac{cb}{2.\sqrt{cb}}=\frac{\sqrt{cb}}{2}\)
\(\frac{ca}{c+a}\le\frac{ca}{2.\sqrt{ca}}=\frac{\sqrt{ca}}{2}\)
Dấu " = " xảy ra <=> a=b=c
Cộng vế với vế của các BĐT trên ta có:
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\le\frac{\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}}{2}=\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}\)
Dấu " = " xảy ra <=> a=b=c
1)\(x^3+y^3\ge x^2y+xy^2\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)
\(\Leftrightarrow x^2-xy+y^2\ge xy\) ( vì x;y\(\ge0\))
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng )
\(\Rightarrow x^3+y^3\ge x^2y+xy^2\)
Dấu " = " xảy ra <=> x=y
2) \(x^4+y^4\ge x^3y+xy^3\)
\(\Leftrightarrow x^4-x^3y+y^4-xy^3\ge0\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)( luôn đúng )
Dấu " = " xảy ra <=> x=y
3) Áp dụng BĐT AM-GM ta có:
\(\left(a-1\right)^2\ge0\forall a\Leftrightarrow a^2-2a+1\ge0\)\(\forall a\Leftrightarrow\frac{a^2}{2}+\frac{1}{2}\ge a\forall a\)
\(\left(b-1\right)^2\ge0\forall b\Leftrightarrow b^2-2b+1\ge0\)\(\forall b\Leftrightarrow\frac{b^2}{2}+\frac{1}{2}\ge b\forall b\)
\(\left(a-b\right)^2\ge0\forall a;b\Leftrightarrow a^2-2ab+b^2\ge0\)\(\forall a;b\Leftrightarrow\frac{a^2}{2}+\frac{b^2}{2}\ge ab\forall a;b\)
Cộng vế với vế của các bất đẳng thức trên ta được:
\(a^2+b^2+1\ge ab+a+b\)
Dấu " = " xảy ra <=> a=b=1
4) \(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)
\(\Leftrightarrow\left[a^2-2.a.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[b^2-2.b.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[c^2-2.c.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\ge0\forall a;b;c\)
\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2\)\(+\left(b-\frac{1}{2}\right)^2\)\(+\left(c-\frac{1}{2}\right)^2\ge0\forall a;b;c\)( luôn đúng)
Dấu " = " xảy ra <=> a=b=c=1/2
Bài 1: Chưa đủ dữ kiện để tính. Từ $a+b=2$ bạn chỉ có thể tính $a^2+b^2+2ab$
Bài 2:
\(a^2+b^2-ab-a-b+1=0\)
\(\Leftrightarrow 2a^2+2b^2-2ab-2a-2b+2=0\)
\(\Leftrightarrow (a^2-2ab+b^2)+(a^2-2a+1)+(b^2-2b+1)=0\)
\(\Leftrightarrow (a-b)^2+(a-1)^2+(b-1)^2=0\)
Vì \((a-b)^2\geq 0; (a-1)^2\geq 0;(b-1)^2\geq 0, \forall a,b\in\mathbb{R}\)
\(\Rightarrow (a-b)^2+(a-1)^2+(b-1)^2\geq 0\)
Dấu "=" xảy ra khi \((a-b)^2=(a-1)^2=(b-1)^2=0\Leftrightarrow a=b=1\)
Bài 3:
\(x+y=x^3+y^3=(x+y)(x^2-xy+y^2)\)
\(\Leftrightarrow (x+y)(x^2-xy+y^2-1)=0\)
\(\Rightarrow \left[\begin{matrix} x+y=0\\ x^2-xy+y^2-1=0\end{matrix}\right.\).
Nếu $x+y=0$ \(\Rightarrow x^2+y^2=x+y=0\)
Mà \(x^2\geq 0, y^2\geq 0, \forall x,y\) nên để tổng của chúng bằng $0$ thì \(x^2=y^2=0\Leftrightarrow x=y=0\) (thỏa mãn)
Nếu \(x^2-xy+y^2-1=0\)
\(\Leftrightarrow (x^2+y^2)-xy-1=0\)
\(\Leftrightarrow x+y-xy-1=0\)
\(\Leftrightarrow (x-1)(1-y)=0\) \(\Rightarrow \left[\begin{matrix} x=1\\ y=1\end{matrix}\right.\)
\(x=1\Rightarrow 1+y=1+y^2=1+y^3\)
\(\Leftrightarrow y=y^2=y^3\Rightarrow y=0\) hoặc $y=1$
\(y=1\Rightarrow x+1=x^2+1=x^3+1\)
\(\Leftrightarrow x=x^2=x^3\Rightarrow x=0\) hoặc $x=1$.
Vậy $(x,y)=(0,0); (1,0), (0,1), (1,1)$
\(1,\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\Leftrightarrow x^2-2xy+y^2\ge0\))
\(\Leftrightarrow\left(x+y\right)^2\ge o\)
Ta có: VT=(x-a).(x-b)+(x-b).(x-c)+(x-c).(x-a)
=x2-ax-bx+ab+x2-bx-cx+bc+x2-cx-ax+ca
=3.x2-2.(ax+bx+cx)+ab+bc+ca
=3.x2-2x.(a+b+c)+ab+bc+ca
=x.[3x-2.(a+b+c)]+ab+bc+ca
Vì \(x=\frac{a+b+c}{2}\)
<=>a+b+c=2x
<=>2.(a+b+c)=4x
<=>3x-2.(a+b+c)=-x
=>VT=x.(-x)+ab+bc+ca
=ab+bc+ca-x2=VP
=>ĐPCM
oh thanks you ~~~~