K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=ak\\y=bk\\z=ck\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2=a^2k^2\\y^2=b^2k^2\\z^2=c^2k^2\end{matrix}\right.\)

Ta có: \(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)\)

\(=\left(a^2k^2+b^2k^2+c^2k^2\right)\left(a^2+b^2+c^2\right)\)

\(=\left(a^2+b^2+c^2\right)^2\cdot k^2\)(1)

Ta có: \(\left(ax+by+cz\right)^2\)

\(=\left(a\cdot ak+b\cdot bk+c\cdot ck\right)^2\)

\(=\left(a^2k+b^2k+c^2k\right)^2\)

\(=\left(a^2+b^2+c^2\right)^2\cdot k^2\)(2)

Từ (1) và (2) suy ra \(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)(đpcm)

7 tháng 9 2017

Đặt \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=k\Rightarrow\left\{{}\begin{matrix}x=ak\\y=bk\\z=ck\end{matrix}\right.\)

Ta có:

\(\left\{{}\begin{matrix}\left(a^2k^2+b^2k^2+c^2k^2\right)\left(a^2+b^2+c^2\right)\\\left(a.ak+b.bk+c.ck\right)^2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}k^2\left(a^2+b^2+c^2\right)^2\\\left(a^2k+b^2k+c^2k\right)^2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}k^2\left(a^2+b^2+c^2\right)^2\\\left[k\left(a^2+b^2+c^2\right)\right]^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}k^2\left(a^2+b^2+c^2\right)^2\\k^2\left(a^2+b^2+c^2\right)^2\end{matrix}\right.\)

\(\Rightarrow\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)

Vậy......................(đpcm)

Chúc bạn học tốt!!!

Giả sử x/a=y/b=z/c=k

=>x=ak; y=bk; z=ck

\(\left(ax+by+cz\right)^2\)

\(=\left(a^2k+b^2k+c^2k\right)^2\)

\(=k^2\cdot\left(a^2+b^2+c^2\right)^2\)

\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)

\(=\left(a^2+b^2+c^2\right)\left(k^2a^2+k^2b^2+k^2c^2\right)\)

\(=k^2\left(a^2+b^2+c^2\right)^2\)

Do đó: \(\left(ax+by+cz\right)^2=\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)