\(\frac{x^2+ã+bx+ab}{x}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2016

\(A=\frac{x^2+ax+bx+ab}{x}\) đúng thế không?

DK x khác 0 

\(A=x+a+b+\frac{ab}{x}=\left(\sqrt{x}-\sqrt{\frac{ab}{x}}\right)^{^2}+\left(\sqrt{a}+\sqrt{b}\right)^2\)

Amin =\(\left(\sqrt{a}+\sqrt{b}\right)^2\)

KHi \(\sqrt{x}=\sqrt{\frac{ab}{x}}\Leftrightarrow x=\sqrt{ab}\)

6 tháng 5 2018

\(A=x+y+\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}=\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+\frac{1}{x}+\frac{1}{y}\)

Theo bđt cô si : \(x+\frac{1}{x}\ge2\sqrt{x\cdot\frac{1}{x}}=2\) và \(y+\frac{1}{y}\ge2\sqrt{y\cdot\frac{1}{y}}=2\)

Theo bđt Bunhiacopxkia dạng phân thức : \(\frac{1}{x}+\frac{1}{y}=\frac{1^2}{x}+\frac{1^2}{y}=\frac{\left(1+1\right)^2}{x+y}=\frac{4}{x+y}\ge\frac{4}{2}=2\)

Cộng vế theo vế 3 bđt trên ta có : \(A\ge2+2+2=6\)

Dấu = xảy ra khi : x=y=1

6 tháng 5 2018

co \(A=2\left(x+\frac{1}{x}\right)+2\left(y+\frac{1}{y}\right)-2\left(x+y\right)..\)

ap dung bdt co- si cho 2 so duong: \(a+b\ge2\sqrt{ab}.\)dau = khi a=b ta co

\(A\ge2.2\sqrt{x.\frac{1}{x}}+2.2\sqrt{y.\frac{1}{y}}-2.2\)

\(\Leftrightarrow A\ge4+4-4=4.\)

dau = xay ra khi a=b=2:1=1.

kl

10 tháng 1 2018

Áp dụng BĐT svacxơ, ta có 

\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{4}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\ge4\)

Dấu = xảy ra <=>x=y=1/2

^_^

13 tháng 7 2020
Chi mà khó rứa
11 tháng 7 2018

ai tích mình mình tích lại cho

24 tháng 12 2021

a có:\(\frac{\left(x-y\right)^2}{xy}\ge0\forall x,y\)

      \(\Leftrightarrow\frac{x^2+y^2-2xy}{xy}\ge0\)

       \(\Leftrightarrow\frac{x}{y}+\frac{y}{x}-2\ge0\)

       \(\Leftrightarrow\frac{x}{y}+\frac{y}{x}\ge2\left(1\right)\)

Áp dụng BĐT Cô-si vào các số dương \(\frac{x^2}{y^2},\frac{y^2}{x^2}\)ta có:

\(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\sqrt{\frac{x^2}{y^2}.\frac{y^2}{x^2}}=2\left(2\right)\)

Áp dụng BĐT \(\left(1\right),\left(2\right)\)ta được:

\(A=3\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)-8\left(\frac{x}{y}+\frac{y}{x}\right)\ge3.2-8.2=-10\)

Dấu '=' xảy ra khi \(x=y\)

Vậy \(A_{min}=-10\)khi \(x=y\)

10 tháng 10 2018

\(A=5x+3y+\frac{12}{x}+\frac{16}{y}=\left(3x+\frac{12}{x}\right)+\left(y+\frac{16}{y}\right)+2\left(x+y\right)\)

Áp dụng BĐT AM-GM cho 2 số không âm:

\(A=\left(3x+\frac{12}{x}\right)+\left(y+\frac{16}{y}\right)+2\left(x+y\right)\ge2\sqrt{\frac{36x}{x}}+2\sqrt{\frac{16y}{y}}+2\left(x+y\right)\)

\(=12+8+2\left(x+y\right)\ge32\) (Do \(x+y\ge6\))

Vậy Min A = 32. Dấu "=" xảy ra <=> x=2; y=4.